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m A compact representation for the pricing formula by using
the Jamshidian decomposition

m Hedging strategies with default-free zero coupon bonds
(delta-hedging « quadratic hedging)

m Numerical implementation and results
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B(t, T)

B(T,T)=1

No coupons, No default

B(t, T) <1lforeveryt<T
f(t,u) instantaneous forward rate:
B(t, T) = exp(— [,] (t,u)du)
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S

riginal HJM model

Dynamics of forward interest rate

df(t, T) = a(t, T)dt + o'(t, T)dW,

with W standard d-dimensional Brownian motion under P
" denotes transpose

a and o adapted stochastic processes in R, resp R?
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Dynamics of zero coupon bonds
dB(t, T) = B(t, T)(a(t, T)dt — o™ (t, T)dW,)

with

a(t, T) =F(£,8) — o' (£, T) 4 5o (. TP
a*(t, T) :/t a(t,u)du
(£, T) :/t o(t, u)du.
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Dynamics of forward interest rate

évy driven HJM model

df(t, T) = aft, T)dt — o(t, T)dL,

with L: one-dimensional time-inhomogeneous Lévy process

DA™




Introduction Pricing of swaption Hedging of swaption Numerical results
P -

UNIVERSITEIT
GENT

Dynamics of forward interest rate

vy driven HJM model

df(t, T) = aft, T)dt — o(t, T)dL,

with L: one-dimensional time-inhomogeneous Lévy process
The law of L; is characterized by the characteristic function

E[eiZLt] _ efof 0s(iz)ds,  Vte[0,T*]
triplet (bs, s, Fs):

1
= bz + Zc.2° +

/(exz — 1 — xz)Fy(dx)
2 R
with b, ¢; € R, ¢, > 0, F; Lévy measure . . . .

with 65 cumulant associated with L by the Lévy-Khintchine
0s(2)
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Integrability assumptions:

évy driven HJM model

/OT* <|bs| + Jcs| + /R(x2 A 1)Fs(dx)> ds < 00

ue[—(1+e)M,(1+e)M]:

m There are constants M, e > 0 such that for every

T*
/ / exp(ux)Fs(dx)ds < co
0 {|x|>1}

= L is an exponential special semimartingale
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Savings account and default-free zero coupon bond prices:
t t
B, = B(0, ) exp( / As, t)ds — / 5 (s, t)dLs)
0 0
t t
B(t, T)=B(0,T)B; exp(—/ A(s, T)ds +/ Y (s, T)dLs)
0 0

with for s A T = min(s, T) and s € [0, T*]

T

A(s, T) :/ST a(s,u)du and X(s,T) :/ o(s, u)du,

AT SAT
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Unique martingale measure=spot measure
A(s, T) =0s(X(s, T))

with 6 the cumulant associated with L by (b, cs, Fs)
/ (€% — 1 — xz)Fy(dx)
R

1
0s(z) = bsz + §csz2 +

= Discounted zero-coupon bonds are martingales

11/42
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dPr 1 4 T

= = — 0s(X(s, T)d. (s, T)dL
T~ 5a T ool [ e s+ [ E L)
dP+ B(t, T)
dP~

- “BBO.T) exp(—/o 0s(X(s, T))ds +/O Y (s, T)dL)

DA™



Introduction Pricing of swaption Hedging of swaption Numerical results

¢l

J

UNIVERSITEIT
GENT
dPT 1 T T
7 = BB, T) P /0 Os(=(s, T)ds + /O X(s, T)dL,)
dPT . B(l’, T) B /t /t
ab-|, ~ BB, 1) P J) G(Es s+ | (s TdlL)

L: time-inhomogeneous Lévy process under P+ and special
with characteristics (bX7, cI7, FI7):

BET = by + ¢,5(s, T) + / x(e=6 7% _ 1)F,(dx)
R

P
G =G

FET(dx) = e F (dx)
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terest rate derivative

Swaption: option granting its owner the right but not the

obligation to enter into an underlying interest rate swap.

m Interest rate swap: contract to exchange different interest
rate payments, typically a fixed rate payment is
exchanged with a floating one.
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Swaption: option granting its owner the right but not the
obligation to enter into an underlying interest rate swap.
m Interest rate swap: contract to exchange different interest
rate payments, typically a fixed rate payment is
exchanged with a floating one.

m A: Payer swaption

m B: Receiver swaption

fixed rate

floating rate
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m Closed-form expression for European option price on
coupon-bearing bond

m P(r,t,s): Price at time t of a pure discount bond
maturing at time s, given that r(t) =r and R, ;s is a
normal random variable

(X aPRer To5)—K) =3 a/(P(Reer. To5) — K

with K; = P(r*, T,s))
and r* is solution to equation > a,P(r*, T,s;) = K
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m Closed-form expression for European option price on
coupon-bearing bond

m P(r,t,s): Price at time t of a pure discount bond
maturing at time s, given that r(t) =r and R, ;s is a
normal random variable

(Z aiP(Rret. T,5) — K)+ = Z aj(P(Rre7. T.sj) — K.I)+

with K; = P(r*, T,s;)
and r* is solution to equation > a;P(r*, T.s;) = K
m Holds for any short rate model as long as zero coupon

bond prices are all decreasing (comonotone) functions of
interest rate
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Theorem Eberlein, Glau, Papapantoleon (2009)

If the following conditions are satisfied:

(C1) The dampened function g = e ®f(x) is a bounded,
continuous function in L}(R).

(C2) The moment generating function Mx, (R) of rv Xt exists.

(C3) The (extended) Fourier transform g belongs to L'(R),
—Rs

= Elf(Xr —s)] = /R "oy (—u— iR)F(u + iR)du,

with @x, characteristic function of the random variable X7.
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Assumptions on volatility structure

m Volatility structure o: bounded and deterministic.
ForO<sand T < T

]
0<%(s, T) = / o(s, u)du < M’ < M,

SAT

m For all T € [0, T*] we assume that o(-, T) # 0 and
(s, T)=01(s)o2(T) 0<s<T,

where 01 : [0, T*] — RT and 0, : [0, T*] — RT are
continuously differentiable.

m infycpo, 72 01(5) > 03 >0
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ricing of swaption

m Payer swaption can be seen as a put option with strike
price 1 on a coupon-bearing bond.

m Payer swaption's payoff at Ty:
(1= ¢B(To, )",
j=1

m 71 < Ty <...< T, payment dates of the swap with
T > Ty

m §j = T; — Tj_1: length of the accrual periods [T;_1, T}]

m x: fixed interest rate of the swap

m coupons ¢; = kb fori=1,...,n—1and ¢, =1+ Kk,

o F = E DA™
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m Start from

ricing of swaption

PS, — B.E[—

—(1-
BT0

Z CJ TOv
j=1

7
with expectation under risk-neutral measure P*

te [07 TO]
m Change to forward measure Pr, eliminating instantaneous
interest rate By, under expectation
PS,

B(t, TO)EPTo[l—ZcJ (To, TN | F] teo, Ty
j=1

=] = = = a

b Ve s e e Kt e e e e
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Define:
m g(s,t,x) = Die™+ VO<s<t<T*

« Dt = % exp ( [ 25 - 05w ) du)

t s
n z;:/ oa(u)du  and XS:/ o1(u)dL,
s 0
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Define:
m g(s,t,x) = Die*
. Dt B(0, t)

* B(0,s)

. i;:/staz(u)

and X, = / o1(u)dL,
0
= g(s,t,Xs) = B(s, t)
and price payer swaption

VO<s<t<T*
exp ( [ 25 - 05w ) du)
VO<s<t<T"

Jj=1

PS, = B(t, To)E' ™ [(1 = >~ gig(T), To, X7))+ | Fi]

by volatility structure assumptions functions x — g(To, T;, x
are non-decreasing functions for j =1,...,n

)
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PS, = B(t, To)EF™[(1 — chg(Tj, To, X75))+ | Fi

j=t

= B(t’ TO)ZCJ'EPTO[(bj - g(TOv TJ'7XT0))+|ft]

Jj=1
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PS, = B(t, To)EF™[(1 — chg(Tj, To, X1o))+ | Fi

j=t

= B(t, To)Y_, GE"[(b; — B(To, T))) |7

j=1

weighted sum of put options with different strikes on bonds
with different maturities

with b such that Dy e™ ™" = g(To, Tj,z") = b,  and
z* is the solution to the equation

>i168(To, Tj27) =1

] [ =
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—RX:

B(t, To ch o /Re’”xfnp]i _x(u+ iR)V(—u— iR)du

with
o (@)= [ [0.(5(s. To) + izoa(s)) — 0u(E(s. To) s

and where

. b e(—iu+R)z 5 Ti
V(—u—iR) = ’ D
(—iu+R)(—iu+Xy +R)
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Hedging of swaption
m Delta-hedging

m Mean variance hedging strategy
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m Integrability assumptions
m Volatility structure assumptions

m |01] < 71 for a certain 7; € R

m |uf- |90;P;2_Xt(u + iR)| is integrable
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The optimal amount, denoted by A%, to invest in the zero
coupon bond with maturity T; to delta-hedge a short position

in the forward payer swaption is given by:

n

- B(t, Ty) 0
A = ZTOH" t, X)) + —H*(t, X
= B TR Sy EH X+ G )

with for £ = 0,1

' HK(EX) _ 1 —R+inxs, T To TRl . e
ot - L Re( +iu) t‘pXTO—Xt(”+’R)V (—u—iR)(—R+iu)‘du.
”
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If-financing delta

B(t, To): bond used as cash account, depends also on X
B(t, T;): bond in which to invest, with T; # T,
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self-financing delta
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B(t, To): bond used as cash account, depends also on X
B(t, T;): bond in which to invest, with T; # T,

solving system of equations for A% and A to obtain discrete
hedging strategy:

OVe _ _OPS: | ;OB(LT) | p00B(t To)

X,  oX, X, OX, 0

(A, — N _)B(t, T;) + (A2 = AY_})B(t, To) = 0
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AVH strategy

m Quadratic hedge in terms of discounted assets S

m MVH strategy is self-financing
= optimal amount of discounted assets is sensible
amount to invest in non-discounted assets

m Minimizing the mean squared hedging error defined as

E[(H—(v+(&-5)r)]
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VH strategy

m Unrealistic to hedge with risk-free interest rate product
= choose bond B(, Ty) as numéraire

DA™
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IVH strategy

m Unrealistic to hedge with risk-free interest rate product
= choose bond B(, Ty) as numéraire

m MVH strategy for payer swaption under forward measure
P+, using numéraire B(-, Tp)

DA™
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m Self-financing strategy minimizing

EF[(PSy, — Vi)2] = EXn[(PSH, — (Vo + / " dB(u, )]

: PST, : : :
hPSy, = ——T0 . fP T
with PSt, B(To. To) (discounted) price of PS at time Ty
~ %4
V = ————: (discounted) portfolio value process

B('7 TO)
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VIVH strategy
m Self-financing strategy minimizing
~ - To
E0l(PSr, — V)l = E0((PSr, — (Vo + | €ldB(u. TV
0
| _ PSq,
with PSTo = m
~ 4
V=—
B('a TO)

. (discounted) price of PS at time Ty

. (discounted) portfolio value process
m Value of self-financing portfolio V:

V, =€0B(t, To) + &B(t, T))
=Vo+ (£ B(-, To))e + (¢ - B(-, T)))e

[m]

=
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m Ideas of
[4 Hubalek, Kallsen and Krawczyk (2006). Variance-optimal
hedging for processes with stationary independent
increments. Annals of Applied Probability, 16:853-885
adapted to present setting
m GKW decomposition of special type of claims:

H(z) = B(To, T;)* forazeC

m Express PSy, as f(B(To, T;)) with f : (0,00) — R and

f(s)= / s“MN(dz)

for some finite complex measure I1 on a strip
{zeC: R <Re(z) <R}
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m (Hi(2))ico 11 == E7[B(To, T))*| 7]
m Optimal number of risky assets related to claim Hr,(z)
for every t € [0, To|:

flle) = AL EL D g [ean(ar)
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1
PSt, = Z ck%/ eli=R)X70 k(—y — iR)du
k=1 &

can be expressed as

with
< Ck [ rj l;;fRAk 2
N(du) = 3 5 (F,) ™ 0*(—u = iR)du,
k=1
fJ — Mexp( TO[HS(Z(S T))—GS(Z(S TO))]dS)
To B(O, TJ) 0 Y ,
32/42
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Theorem
M

If additionally 3M" < M and if R is chosen in ]0, 77-] =
GKW-decomposition of the PS exists.
Optimal number & to invest in B(-, T;
MVH strategy given by

) is according to the

C T RN ()0 kg (1) (25F)
by = ba by b
/ e T B(t—,T)™m T "hoM(dy),
’ XJ
R Kt (2)

with M(du) as in previous lemma and with for w¢ =1 —w

Xj(w):é)s(w):(s, T;)+weX(s,To))—wbs(X(s,T;))—w0s(X(s, To)), )

Kg
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m Receiver swaption

umerical results
m Normal Inverse Gaussian

m Vasicek volatility structure

o(s, T) = 6e72(T—9
m Maturity in 10 years
m Tenor=10 years

m Two payments/year
) hedging
|
0

swap
10

DA™
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¢ Hedging strategies
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|| B(7 Tl) 8(7 TlO) B(7 T20)
Delta 951 (0.77) 3.02 (0.24)  —2.30 (0.22)

Delta-gamma || 87.93 (5.78) 35.19 (2.63)  30.01 (2.64)
MVH 436 (0.40) 3.88 (0.39)  3.28 (0.38)
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Delta- and gamma

A
" UNIVERSITEIT

|| a=0.02 a = 0.06
= 30.01 (2.64) 20.92 (1.80)
6 17.68 1 53) 12.32 (1.07)

Characteristic function of the NIG model

o(z) = exp(—d(/a? = (B + i2)* = /a2 — 7)),

Vasiéek volatility model

o(s, T) = e 279
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¢ Hedging strategies
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| B(.T)  B(~Tw)  B(.Tx)
Delta 951 (0.77) 3.02 (0.24) —2.30 (0.22)

Delta-gamma || 87.93 (5.78) 35.19 (2.63)  30.01 (2.64)
MVH 436 (0.40) 3.88(0.39)  3.28 (0.38)
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A 1edging strategies
" UNIVERSITEIT o
GENT
| B(.T)  B(~Tw)  B(.Tx)
Delta 051 (0.77) 3.02 (0.24) —2.30 (0.22)
Delta-gamma || 87.93 (5.78) 35.19 (2.63)  30.01 (2.64)
MVH 436 (0.40) 3.88(0.39)  3.28 (0.38)

Full risk: 3.29 (0.41)
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ntentions

0 2 4 6

Delta-hedge

8

26

34
32

3
28
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24
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Mean-variance hedge
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