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The model

Let (22, G, P) be a probability space, B = (B;):>0 be a standard Brownian motion,

© = (0,);>0 be a continuous Markov chain with two states 0 and 1,
initial distribution [1 — 7, 7] for 7 € [0, 1],

transition probability matrix [0t 1 — e=Aot; 1 — e=Mit e~ Mt for t > 0,
and intensity matrix [—Ag, Ag; A1, —A1] for some A\; >0, ¢ =0,1.

Assume that the asset price S = (S;)¢>¢ is given by:

t 0.2
Stzsexp(/ (r——éo—(él—éo)e)u)du—f—aBt)
0 2

where r >0,0>0,0<9; <r,i=0,1.
The asset with price S pays dividends at the rate §; when ©, = 0,

and at the rate §; when ©, = 1.
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The model

It is shown that the asset price solves the equation

dSy = (r — 0o — (01 — 60) ©¢) Sedt + 0 Sy dB; (S = )
and thus admits the representation

dSy = (r— 60— (61 — 00)IL;) Sy dt + 0 Sy dBy  (So = s)

where the filtering estimate IT = (II;);>( defined by II, = F[©, | F]
= P(©; = 1| F}) solves the equation

dlly = (A (1 —1L) — Ao II;) dt —

61— 6 —
10 Im,(1-1,)dB;, (Hy=n)

and the process B = (B;)>o defined by

— tds, 1 [t
Bt:/orsu—f/o (r—60—(61—60)Hu)du

g

is the innovation Brownian motion.
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The optimal stopping problem

The problem is to compute the value
Vi=supE[e”"7 (S, — K)"]

where the supremum is taken over 7 with respect to F; = 0(S, |0 < u < t).

Let us consider the following extended optimal stopping problem

Vi(s,m) = sup Es » [e_” (S; — K)+]

where Ps . is a measure of (S,1I) started at some (s,7) € (0,00) x [0, 1].

The optimal stopping time is given by
7 = inf{t > 0| V.(S;, ;) < (S; — K)T}
so that the continuation region has the form

C. ={(s,7) € (0,00) x [0,1] | Vi(s,7) > (s — K)T}.
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The optimal stopping boundary

By means of a generalized 1t6's formula, we get:
e (S - K)T = (s— K)T + MK
t 1t
+/ e "™ A(Sy, 1) I(S, > K) du + 5/ e T I(S, # K) deX (S)
0 0
where A(s,7) =K — (6o + (01 — do)m)s and
1 t
(5 (S) :lim—/ I(K—-e<8,<K-+e)o?S2du
0
exists as a limit in probability. Here, the process M % = (M)~ defined by:
t —
ME = / e "™ I1(S, > K)oS,dB,
0

is a continuous (uniformly integrable) martingale under P .
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The optimal stopping boundary

Applying Doob's optional sampling theorem, we get:
Eorle (S —K)Y] = (s — K)*
T 1 /7 _.
+ Es x [/ e”" A(S,, I,) I(Sy > K) du + 5/ e " I(S, # K) dtX(S)
0 0

for any 7 and all (s, 7) € (0,00) x [0,1].

It is seen that it is never optimal to stop when
A(S;, ;) =rK — (00 + (61 — 00)I1;)S: <0 and S; > K
and thus, all the points (s, ) such that
K <s<b(mr) with b(m)=rK/(d + (81 — dp)7)

belong to C. clearly containing the rectangle {(s,7) € (0, K] x [0, 1]}.
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The optimal stopping boundary

For some (s,7) € C and 7. = 7i(s, ), we have:
Vi(s,m)— (s — K)T
B, { /0 e A (S L) ISy > K) du+ % /0 T (s, £ K) deX (S)] >0
Hence, taking K < b(w) < s’ < s, we get:
Vi(s',m)— (s — K)*
> Eg n UOT e " A(S,, I1,) I(S, > K) du + % /OT* e "™ I(S, # K) deuK(S)]
> Byn UOT e A (S, ) 1(Sy > K) du + % /OT* e (S, £ K) dﬁff(S)]
and taking into account 0 < §; < r, we see that (s',7) € C,.
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The optimal stopping boundary

These arguments together with concavity of s — V., (s, 7) show that

there exists a function b, (7) such that K < b(w) < b.(n) for all = € [0, 1], and
Cy ={(s,m) € (0,00) x [0,1]] s < bu(m)}
so that the corresponding stopping region is the closure of the set:
D, ={(s,m) € (0,00) X [0,1] | s > bu(m)}.
Lemma 1. The optimal exercise time has the structure:
T = inf{t > 0|S; > b.(II;)}
where the function b, () satisfies the properties:
bi(m) 1 [0,1] — (K,00) is decreasing/increasing if ¢ < d1/d9 > &1
K <b(r) <b.(m) with b(m) =rK/(do + (61 — do)m).
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The optimal stopping boundary

For any (s,m) € C,, we take 7’ such that 7’ < 7 if 69 < §;1 (or m < 7’ if 69 > 61)

whenever s > K. Then, since 7, = 7.(s,7) does not depend on 7', we have:

Vi(s,7') — (s — K)*

> { /O e AL L) 1(S > K) dut L A U I(S, # K) deS (S)]
> E, UOT e~ A(Su, T1y) I(Su > K) du + % /OT* e IS, £ K) cw{f(S)]
=Vi(s,m) = (s = K)" >0

and thus conclude that (s,7") € Cy, so that the boundary b,.(7) is decreasing

(increasing) on [0, 1] whenever 6y < 01 (dp > d1).
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The free-boundary problem |

The infinitesimal operator L(g 11y has the structure:

1
]L(SII) e (T—50 — (51 —(50)77)5884- 50282883 — ((51 —50)37‘((1 —77)8”

91 — o
g

1 2
+()\1(17r)/\07r)8ﬂ+2< ) 72(1 = )% O
for all (s,m) € (0,00) x [0, 1].
It follows from the general optimal stopping theory that the unknown value
function V, (s, ) and the boundary b, () satisfy the free-boundary problem:
(Ls,mV —rV)(s,m) =0 for (s,m)eC
Vs, 7r)|5:b(7r)7 =b(r) — K (instantaneous stopping)
V(s,m)=(s— K)* for (s,m)€D
V(s,m) > (s—K)" for (s,m)€C.
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The case of full information

Let us now recall the problem with full information

W.(s,m) =sup E, » [e‘”l (S; — K)+]

T/

where the supremum is taken 7' with respect to G; = 0(Sy, 0, |0 < u < t).
7. =inf{t > 0]S; > a.(0)}.
The functions W, (s, i) and the boundaries a. (i), i = 0, 1, solve:
(r— 6;) s Wa(s,1) + N W(s, 1 — i) + % 02 2 Wa(s,1) = (1 + \)W (s, )

W (s,1)| =a(i) — K (instantaneous stopping)

s=a(i)—

Wi (s, )| =1 (smooth fit)

s=a(i)—
W(s,i)= (s — K)* for s> af(i)

W(s,i) > (s — K)* for s<af(i).
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The case of full information

The general solution of the free-boundary problem is given by:

W(s,i) = C1(i) s"* + Cy(i) s for s < a(0)
)\18 _ )\1K
i+ r+ M

W(s,1) = C3(1) s" + for a(0) <s<a(l)

where the constants C;(¢) and the boundaries a(i), i = 0,1, j = 1,2, satisfy:

C1(0) a® (0) + C5(0) a2 (0) = a(0) — K
/\18 )\1K

Cr(1) 0™ (0) + C3(1) 0™ (0) = C(1) ™ (0) + F25- = 2

C1(0) B1a” (0) + C2(0) B2 a™*(0) = a(0)
A1
01+ A\

C1(1) B1(Br — 1) @ (0) + Co(1) B2(B2 — 1) a?(0) = C3(1) 11 (71 — 1) a?*(0).

C1(1) B1a”™(0) + C2(1) B2 a™(0) = C3(1) 7107 (0) +
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The case of full information

The particular solution of the system is given by:

W(s,i5a4(1)), if 0<s<a.(i)

Wi(s,i) =
s— K, if s> a.(i)
where
2
_ e (B3—j = 1)as(0) = By K /s \Fi
W (s,0;a.(0)) = ; J i i (a*(0)> for s<a,(0) and
2
53 W CL* ,1,(1*(1)) 7W€(a*(0)717a*(1))a*(0) S Bi
W (s, 1;a.(0 Z —j ) (a* 0))

. _ [ d1a.(1) riK s _\" A1 Ak
Wi(s, 1;a.(1)) = (51 + M\ 7«_|_/\1> (a*(l)) + +M r+N

for a.(0) < s < a«(1).
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The case of full information

Here, a.(0) is determined from:

D (=1) 8;(8; — 1)[Bs—iW(a.(0), 1; ax (1)) — Wi(a.(0),1; ax(1))a.(0)]
j=1

_ yrK

—(51—52)T+)\1

and a. (1) is explicitly given by:
. " K T 01+ A
m—1lr+X &

where the numbers 3, < 31 are the two largest roots of:

a4 (1)

(r +Xo— B(r—d) — %5(5 - 1)02> (r FA =B —6) — %5(5 - 1)02) = Mo

and 75 < 0 < 1 < 71 are explicitly given by:

_1 7“—(51 i 1 7“—(51 2 2(T+/\1)
NT9T T2 _(_1>\/(2_ o2 > + o2
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The change of variables

Let us define the process Y = (Y;);>0 by:

S ML

C1-1L

with n = (61 — dp)/o%. Then, we have:
S¢Ye

1+ 57V,

AL —XNoSY: 2 s
Yi = — —(2r—09 — 01 — Y, Yo=y=
¥ ( 1+ 87V, g r—do—dr—07) ) Yedt (Yo=y=1—7

Yy

dSt=<T—6o—(51—50) )StdtwstdBt (S0 = 5)

for any (s, m) € (0,00) x (0,1). The value function is given by:
U.(s,y) =sup Ey [6_” (S; — K)+]
and the optimal stopping time has the form:

o = inf{t > 0|5 > ¢g.(V2)}.
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The free-boundary problem I

The infinitesimal operator L(g y has the structure:

77 1
Lisy) = (T — 0o — (61 — o) Sy) 505+ = 0 5% 0y,

1+ sy 2
AL —osy 2
MY g gy — 5y —
( TFery 20000 Jyd,

for all (s,y) € (0,00)%. The function U.,(s,y) and the boundary g.(y) solves:

(LisyyU —rU)(s,y) =0 for 0<s<g(y)
U(s,y)|

U(s,y) = (s — K)* for s> g(y)

s=g(y)— g(y) — K (instantaneous stopping)

U(s,y) > (s — K)t for s<g(y)

U(S7y)’s:0+ =0 (natural boundary), Us(s,y)|szg(y)7 =

Uy(svi‘/)L:g(y)_ exists.
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The verification assertion

Lemma 2. The value function takes the form:

U(s,y;9«(y)), if 0<s < gu(y)
U*(Svy) =
s — K, if s> g.(y)

and K < g(y) < g«(y) holds for the boundary g.(y) with:
g 1 (s) = (6ps —TK)s™"/(rK — 6;5).

for each 1K /(6o V 61) < s < 1K /(89 A1) withn = (69 — 61)/0* and y > 0.

Proof. Applying the change-of-variable to the solution e "*U (s, y), we obtain:
t
e U(S;, Yy) = Us, y)+/ e " (Lis,y)yU=rU)(Su, Yu) I(Su # g:(Yu)) dutM;
0
with the continuous local martingale M = (M;);>( defined by:

t
M, = / U Uy (Sus Vi) I(Sa # 92(Ya)) 0 Su dB.
0
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The verification assertion

It follows that the inequalities:
(LsyyU —rU)(s,y) <0 for (s,y) € (0, o0)?
U(s,y) 2 (s = K)* or g(y) <guly) for (s,y) € (0,00)
hold, and thus
eT(S, = K)T <eTTU(S,,Y,) <U(s,y) + M,

for all stopping times 7 of (S,Y") started at (s,y) € (0, 00)?

Then, for an arbitrary localizing sequence (7, )nen, we have:

Es,y [677’(7'/\7”) (ST/\T,,, - K)Jr] § Es,y [eir(T/\T") U(ST/\T"7YT/\T,,,)]

S U(Sa y) + ES,y [M‘f'/\ﬂljl = U(Say)

Pavel Gapeev (London School of Economics)Pricing of perpetual American options in a n 23 June 2010

21/ 29



The verification assertion

Hence, by means of Fatou lemma, we obtain:
E, [e_” (S — K)+] < E,, [G_TT U(S-, YT)] <U(s,y)

for any stopping times 7 and all (s,y) € (0,00)2.

Since U(s,y) and g.(y) solves the free-boundary problem, we have:
efr(‘r*/\‘r”) (ST*/\Tn - K)+ - eir(T*/\T") U(ST*/\Tnvyn/\‘rn) = U(‘Sv y) + MT*/\Tn

for any localizing sequence of stopping times (7, )nen.

Therefore, applying the Lebesgue dominated convergence, we get:
E, [e*”* (Sr, — K)+] =FE,, [e*”* U(ST*,YT*)] =U(s,y)

for all (s,y) € (0,00)?, that proves the desired assertion. [J
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The main result

Theorem. The value function takes the form:

V*<S,7r) _ U*(S,S_”ﬂ'/(l - 7T'))7 if0<s< g*(g—nﬂ-/(l _ 77))

s— K, if s> g« (s /(1 —m))
and the optimal exercise boundary b, () is the inverse to:
b (s) = "9 (s)/ (1 + 579, (5))

for each 1K /(60 V 61) < s < 1K /(89 A1) withn = (6 — 61)/0>.
Moreover, both the value function V.(s,m) and the boundary b, (m) are

decreasing (increasing) and continuous in € [0, 1], whenever 6y < 01 (6o > 61).

Pavel Gapeev (London School of Economics)Pricing of perpetual American options in a n 23 June 2010 23 / 29



Some estimates

Remark 1. It can be checked that the function:

o~

W(s,m) = W(s,0;a.(0)) (1 —m) + W(s,1;a.(0)) 7
solves the partial differential equation above for 0 < s < a(m), where
WL (@), 0; . (0)) (1 — ) + Wo(@(m)), L . (0)) 7 = () — K
for all = € [0, 1]. It follows that the function:

— Wi(s,ma(m)), if 0<s<a(mr
N L (")
s— K, if s>a(n)

is a lower estimate for the value function V. (s, ), so that

We(s,1—14) < /V[7(s, ) < Vi(s,m) < Wi(s,i) whenever 061_; >9;, i=0,1.
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Some estimates

Suppose that a function U(s,y) and the boundary g(y) solve:

A1 —Xosy m
(LisyyU—rU)(s,y) = <1+577y_2 (27"—(50—51—02)> yUy(s,y) for s < g(y)

and the general solution takes the form:
U(s,y) = Ci(y) s™ F(l +eo+ e l+po—pil+ @o;s”y)

+ Ca(y) s F<1 — o+ 1,1 — o — 901§1*S00§5ny>

1 r—=4do : 1 /682 2r roo1\°
i=5——= —(D'on, @i=—/5+6(1-— —St5) -
@ =5 = s —(=D'eon, ¢ 77\/U4+< 04)+(02+2)

and F(a,b;c;z) is a Gauss' hypergeometric function.
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Some estimates

Applying the boundary conditions, we get that Cs(y) = 0, so that:

Ci(y) 9** (y) F(1 + @0 + @1, 1 + 0o — p1; 1+ 00: 9" (v)y) = g(y) — K

ot (14 90)* — ¢} . g
nCi(y)g (Q)QWF(Q‘F%-F@LQ-F@O—<P172+<P079 (¥)y)

+a1C1(y) g% (y) F(1+ @0 + @1, 1+ @o = @151 + 903 9" (1)y) = 9(y)
and thus, the solution is given by:

- g (Y)F(p+ @0+ @1,p+ 9o — @151 + 05 §"(y)y)

for all 0 < s < g(y) and each y > 0 fixed, where g(y) is uniquely determined by:

(1+@0)? — i F(2+ 90+ 91,2+ 90 — 132+ 019" (y)y) _ 1K + (1 — a1)g(
L+po  F(l+go+en,l+e0—eil+eng@)y)  (9(y) — K)ng"(y):
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Some estimates

Corollary. Following the arguments of Lemma 2, it is shown that the function:

B(s.1) = U(s,y:4(y)), if 0<s <g(y)

s— K, if s>9(y)
with U(s,y;g(y)) defined above coincides with the value function:

~

U(s,y) =sup Es, {e”(Sf - K)*t
T A1 — Ao SYY; PN N
/0 et (M - g (2r — 8y — &1 — 02)) Y, U, (S, Y2) 1(S; < (V7)) dt
and g(y) provides the hitting boundary for:
T=inf{t >0]5; > g(¥1)}

which is an optimal stopping time in the problem above.
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Some estimates

Remark 2. Assume that Ay = A\; = 0 meaning that:
©,=0, P@=1)=mn, and P@=0)=1-m, for we][0,1].

Then, [7(3, y) = U.(s,y) and §(y) = g«(y) holds, whenever &y + d; = 2r — o2

Remark 3. Under the assumptions above, we have:

(@yU.)(5,9))| 0

s=gu(y)—
for all y > 0, and thus

(&rV*)(s,ﬂ')’ 0

s=by (m)— =
with b, (7m) = g (s /(1 — 7)) for all w € (0,1). At the same time, we have:

Ws(sﬂ ) ‘s:a(ﬂ)—

for all m € (0,1).
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Thank youl
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