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Hedging problem

Goal: Find an optimal investing strategy for a portfolio

Target: Payoff at maturity

Investment strategy for the portfolio (optimal with
respect to a measure of risk)

Realtime implementation
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Importance of hedging

Hedging is very important in finance as a tool for

Option pricing

Replication of hedge funds

Risk management
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Description of the problem
Sk : Value of the d underlying assets at period k
(assumed square integrable).
F = {Fk , k = 0, . . . , n}: Filtration. S is F-adapted.
Δk = βkSk − βk−1Sk−1, where the discounting factors
βk are predictable, i.e. βk is Fk−1-measurable for
k = 1, . . . , n.
C : Payoff at period n.

Aim: Find an initial investment amount V0 and a predictable

investment strategy
−→
φ = (φk)nk=1 that minimize the

expected quadratic hedging error E

[{
G

(
V0,

−→
φ

)}2
]
, where

G = G
(
V0,

−→
φ

)
= βnC − Vn,

and the discounted value of the portfolio at period k is

Vk = V0 +
k∑

j=1

φ�j Δj , k = 0, . . . , n.
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Optimal hedging strategy

Set Pn+1 = 1, and for k = n, . . . , 1, define

Ak = E
(
ΔkΔ�

k Pk+1|Fk−1

)
,

bk = A−1
k E (ΔkPk+1|Fk−1) ,

αk = A−1
k E (βnCΔkPk+1|Fk−1) ,

Pk =
n∏

j=k

(
1 − b�

j Δj

)
.

Theorem

Suppose that E (Pk |Fk−1) �= 0 P-a.s., for k = 1, . . . , n.

Then the solution
(
V0,

−→
φ

)
of the minimization problem is

V0 = E (βnCP1)/E (P1), and

φk = αk − Vk−1bk , k = 1, . . . , n.
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Option pricing

Ck : optimal investment at period k so that the value of the
portfolio at period n is as close as possible to C , in terms of
mean square error.

⇒ βkCk =
E (βnCPk+1|Fk)

E (Pk+1|Fk)
, k = 0, . . . , n.

Minimal martingale measure P̂:

dP̂

dP

∣∣∣∣∣
Fk

=
k∏

j=1

E (Pj |Fj )

E (Pj |Fj−1)
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Markovian dynamics

If the price process S is Markovian and Cn = Cn (Sn), then
Ck = Ck(Sk), αk = αk(Sk−1), and bk = bk(Sk−1). It follows
that all these functions can be approximated using the
methodology developed in Papageorgiou et al. (2008).

Another interesting case encountered in practice is when Sk

is not a Markov process but (Sk , hk) is Markov, even if hk is
not observable, as in GARCH models or Hidden Markov
models (HMM for short).

If Cn = Cn (Sn), then Ck = Ck(Sk , hk),
αk = αk(Sk−1, hk−1), and bk = bk(Sk−1, hk−1).
Again, all these functions can be approximated using the
methodology developed in Remillard et al. (2010).
Implementation of the hedging strategy then requires
prediction of ht given S0, . . . ,St , which is a filtering problem.
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Lévy processes
Examples

Brownian motion

Poisson process

Jump-diffusion (Merton, 1976):

Lt = μt + σBt +
Nt∑
j=1

ζj .

More generally a Lévy process L is a process with
independent stationary increments, i.e.,

Lh,L2h − Lh, . . . ,Lnh − L(n−1)h

are all independent and have the same distribution.

The only continuous Lévy processes are Brownian motions
with drifts: μt + σBt .

In the following, we consider Lévy processes with exponential
moments.
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Representation

For the rest of the presentation, we only consider one
dimensional processes. The multivariate case is treated in
the paper.
A Lévy process L can be characterized by three parameters
(μ, a, ν) such that for all |θ| ≤ 2,

E
(
eθLt

)
= etΨμ,a,ν (θ),

where

Ψ(θ) = θμ+
1

2
θ2a +

∫
R\{0}

(
eyθ − 1 − θy

)
ν(dy).

Here μ ∈ R, a > 0 and ν is a Lévy measure. In particular,
E (Lt) = tμ, Var(L) = t(a + aν), where aν =

∫
R\{0} y2ν(dy).
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Generator
Often financial models are described in terms of a stochastic
differential equation.

Black-Scholes-Merton:

dSt = μStdt + σStdWt

A more practical approach is to describe the law of the
process L through its infinitesimal generator L: For all “nice”
functions f ,

f (xt) −
∫ t

0
Lf (xu)du

is a martingale. For a Lévy process with parameters (μ, a, ν),

Lf (x) = μf ′(x) +
a

2
f ′′(x)

+

∫
R\{0}

{
f (x + y) − f (x) − yf ′(x)

}
ν(dy).
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Examples

Brownian motion: Lf (x) = 1
2 f ′′(x).

Poisson process with intensity λ:

Lf (x) = λ{f (x + 1) − f (x)}, x = 0, 1, . . .

Jump-diffusion:

Lf (x) = μf ′(x)+
σ2

2
f ′′(x)+λ

∫
{f (x+y)−f (x)}g(y)dy ,

if the size of the jumps ζj have density g .
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Regime-switching geometric Lévy processes
Given a regime-switching Lévy process L, process S ,
hereafter called a regime-switching geometric Lévy process,

St = seLt

is the associated regime-switching geometric Lévy process,
i.e., (S , τ) is a Markov process with generator L

Lf (s, i) = Li f (s, i) +
l∑

j=1

Λij f (s, j),

where for each i = 1, . . . , l , Li is the generator of the
geometric Lévy process Si ,t = seLi,t , and

Li f (s) = sψ(i)f ′(s) + s2 a(i)

2
f ′′(s)∫

R\{0}

[
f {s(1 + y)} − f (s) − ysf ′(s)

]
ν̃i(dy),
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Set

(Λt)ij = Λijγ(t, j)/γ(t, i), i �= j ,

(Λt)ii = −
∑
j �=i

(Λt)ij ,

where

d

dt
γ(t, i) = −
(i)γ(t, i) +

l∑
j=1

Λijγ(t, j), γ(0, i) = 1,

i = 1, . . . , l .
Λt is the generator of a time non homogeneous Markov
chain τ̃ .
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Extended Black-Scholes formula

Let C is the unique solution of

∂tCt(s, i) + HT−tCt(s, i) = rCt(s, i), CT (s, i) = Φ(s),

where

Ht f (s, i) = rsf ′(s, i) +
a(i)

2
s2f ′′(s, i) +

l∑
j=1

(Λt)ij f (s, j)

+

∫
{1 − ρ(i)y} [

f {s(1 + y)} − f (s) − ysf ′(s)
]
ν̃i(dy).

Set

α(t, s, i) = ∂sCt(s, i) +
1

sA(i)
{Ct(s, i)m(i) + KiCt(s, i)} ,

where Ki f (s) =
∫

y [f {s(1 + y)} − f (s) − ysf ′(s)] ν̃i (dy).
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Solution for regime-switching geometric Lévy
processes

Explicit representation of the“Minimal Martingale Measure”.

Theorem

The optimal solution of the hedging problem for a
regime-switching geometric Lévy process is given by φ, and
the actualized value of the associated portfolio is V ,

where V satisfies the stochastic differential equation

Vt = C (0, s, i) +

∫ t

0
α(u−,Su−, τu−)dXu −

∫ t

0
Vu−dMu

and φt = α(t,St−, τt−) − Vt−
ρ(τt−)
Xt− , with C and α defined

below.
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Martingale and change of measure

One can write

Ct(St , τt) = E {Φ(ST )ZT |Ft} /γT−t(τt),

where Mt =
∫ t
0

ρ(τu−)
Xu− dXu and Z = E {−M}.

If Z is positive, then dP̂i
dPi

= ZT/γ(T , i) defines a change of
measure under which X is a martingale.

For example, for the regime-switching geometric Brownian
motion, S is continuous so Z is positive, being an
exponential.

If Z is not positive, then the“price”Ct(s, i) does not
correspond to an expectation under an equivalent martingale
measure.
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Regime-switching Brownian motion

For that model νi ≡ 0 and A = a, S is continuous, and its
generator is

Lf (s, i) = ψ(i)sf ′(s, i) +
a(i)

2
s2f ′′(s, i) +

l∑
j=1

Λij f (s, j).

It follows that

Ht f (s, i) = rsf ′(s, i) +
a(i)

2
s2f ′′(s, i) +

l∑
j=1

(Λt)ij f (s, j)

is the generator of a time non homogeneous Markov process
(S̃ , τ̃), where the Markov chain τ̃ has generator (Λt), so

Ct(s, i) = e−r(T−t)E
{

Φ(S̃T )|S̃t = s, τ̃t = i
}
.
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Next,

α(t, s, i) = ∂sCt(s, i) + Ct(s, i)ρ(i)/s, i = 1, . . . , l .

Using the“pathwise method” in Broadie and Glasserman
(1996), one can use simulations to obtain an unbiased
estimate of αt .
In fact if Φ is differentiable almost everywhere, then

∂sCt(s, i) =
1

s
e−r(T−t)E

{
S̃TΦ′(S̃T )|S̃t = s, τ̃t = i

}
,

so αt can be written as an expectation of a function of S̃T .
Finally,

φt = ∂sCt(St , τt−) +
{
Ct(St , τt−) − ertVt−

} ρ(τt−)

St
.

In particular, φ0 = ∂sC0(S0, τ0). It follows that φt can be
estimated by Monte-Carlo methods.
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Optimal hedging vs delta-hedging

For the Black-Scholes-Merton model, there is perfect
hedging, i.e., Vt = e−rtCt(St), so φt = ∂sCt(St).

Its follows that the optimal hedging is delta-hedging only
when there is no hedging error.

The formula

φt = ∂sCt(St , τt−) +
{
Ct(St , τt−) − ertVt−

} ρ(τt−)

St

allows for a“correction”, using the hedging error
Gt = Ct(St , τt−) − ertVt−.
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Continuous time approximation

It can be shown that the discrete time regime-switching
models can be approximated by their continuous time
counterpart. Here we state some conditions under which the
HMM model “converges ” in some sense to a
regime-switching geometric Lévy process.

More direct approach than in Prigent (2003).

Under slightly the same conditions, the“option prices”and
the optimal strategy under a HMM model also converge in
some sense to the optimal strategy of the regime-switching
geometric Lévy process.
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Continuous time limit of the HMM price process

Suppose now that for each n, one has a HMM model(
S

(n)
k , τ

(n)
k

)
, where β

(n)
k = e−rTk/n. Define S (n)(t) = S

(n)
[nt/T ].

From now on, when talking of convergence in law, denoted
by �, we mean convergence in law in the space in the space
of càdlàg functions over [0,T ] with the Skorohod topology.

For simplicity, let Ei denote expectation under the law of

ξ
(n)
1 given τ

(n)
1 = i and recall the following notations:

Ei

(
ξ
(n)
1

)
= μ(n)(i) and Ei

{(
ξ
(n)
1

)2
}

= B(n)(i), i = 1 . . . , l .

Further let C2(R
d) be the set of continuous functions f on

R
d so that f (y) = O(|y |2) and f (y)/|y |2 → 0 as y → 0.
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Theorem

Suppose that limn→∞ n
(
Q(n) − I

) → ΛT. Assume also that
for any i = 1, . . . , l , the following conditions are satisfied, as
n → ∞: nμ(n)(i) → Tm(i), nB(n)(i) → TA(i), and for all

f ∈ C2(R
d), nEi

{
f

(
ξ
(n)
1

)}
→ T

∫
f (y)ν̃i (dy).

Then
(
S (n), τ (n)

)
� (S , τ) with generator

Lf (s, i) = Li f (s, i) +
l∑

j=1

Λij f (s, j),

where for each i = 1, . . . , l ,

Li f (s) = sψ(i)f ′(s) + s2 a(i)

2
f ′′(s)∫

R\{0}

[
f {s(1 + y)} − f (s) − ysf ′(s)

]
ν̃i(dy),

is the generator of a geometric Lévy process.
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Example

Consider a regime-switching geometric Gaussian random
walk with

ξ
(n)
k = eR

(n)
k −rT/n − 1,

where under Pi , R
(n)
k is Gaussian with mean{

ψ(i) − a(i)
2

}
T/n and variance a(i)T/n.

It is easy to check that the conditions of the previous
theorem are met with ψ(i), A(i) = a(i) and νi ≡ 0.

In other words, the limiting process is a regime-switching
geometric Brownian.
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Continuous time limit of the optimal hedging
strategy

Suppose that the assumptions of the previous theorem are
met.

Theorem

Suppose that Φ(s) = O(|s|p), Φ is almost everywhere
differentiable with derivative Φ′(s) = O(|s|p−1) and

E
{(
ζ(n)

)k
}

= 1 + θk/n + o(1/n), k = 1, . . . , 2p + 2. Then

(
S (n), τ (n),C (n), α(n),V (n), φ(n)

)
� (S , τ,C , α,V , φ) .

For regime-switching geometric Gaussian random walk, the
condition hold for call and put options with p = 1.
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Call and put options on the S&P 500

Example comes from Remillard et al. (2010) where the
authors analyzed the daily log-returns of the S&P 500 from
January 1st 2007 to December 31st 2008.

They concluded that a regime-switching geometric Gaussian
random walk with 4 regimes was the best fit for that data
set.
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Figure: S&P 500 over the period 01/01/2007 to 12/31/2008.
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Estimated parameters

Table: Parameter estimations of the daily log-returns using 4
regimes.

Regime Mean Variance stat. distr. Prob. of next regime

1 -0.00500 0.002221 0.133 0.0084
2 -0.00134 0.000191 0.517 0.9850
3 0.00131 0.000126 0.113 4.2798e-006
4 0.00119 0.000014 0.237 0.0064

Table: Transition matrix Q for 4 regimes.

Regime 1 2 3 4
1 0.9842 0.0158 0 0
2 0.0043 0.9744 0 0.0213
3 0 0 0 1
4 0 0.0542 0.4754 0.4704
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From discrete case to continuous case

To find the associated parameters in continuous time
(measured in years), one can multiply the mean and variance
by 250 and set Λ = 250(Q − I ).

Our aim is to price, using a regime-switching geometric
Brownian motion, at-the-money call and put options with a
maturity of 0.12 years (30 days), using an annual rate of 3%
and a starting price of the underlying asset of 100.
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Parameters for the regime-switching geometric
Brownian motion

Table: Parameters for the continuous time case.

Regime ψ A ρ �

1 -0.9724 0.5553 -1.8053 1.8096
2 -0.3111 0.0478 -7.1440 2.4370
3 0.3433 0.0315 9.9444 3.1151
4 0.2993 0.0035 76.9286 20.7130

Table: Generator Λ.

Regime 1 2 3 4
1 -3.9500 3.9500 0 0
2 1.0750 -6.4000 0 5.3250
3 0 0 -250.0000 250.0000
4 0 13.5500 118.8500 -132.4000
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Simulation results

The next table contains prices of at-the-money call and put
options, together with the value of φ0 = ∂sC0(s, i), obtained
by using 1,000,000 repetitions and antithetic variables.

Using previous results, one predicts that the next regime will
be regime 2, having probability .98.

Because one can evaluate Ct and φt for any t, one could do
as proposed in Remillard et al. (2010) and compare the
optimal discrete hedging with the discretized version, i.e., by
considering φTk/n for k = 1, . . . , n, as in the discretized
version of the Black-Scholes model, using filtering to predict
the regimes using information available previously.
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95% confidence intervals for the price of at-the-money calls and puts,

together with initial investments, using 1,000,000 simulations.

Call

Regime Price φ0

1 9.3103 ± 0.0182 0.5524 ± 0.0004
2 3.5034 ± 0.0069 0.5356 ± 0.0001
3 2.6398 ± 0.0049 0.5380 ± 0.0002
4 2.6469 ± 0.0049 0.5384 ± 0.0002

Put

Regime Price φ0

1 8.9549 ± 0.0110 −0.4475 ± 0.0003
2 3.1435 ± 0.0055 −0.4644 ± 0.0001
3 2.2803 ± 0.0041 −0.4620 ± 0.0002
4 2.2874 ± 0.0042 −0.4616 ± 0.0002
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