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Motivation

Asset returns are non normal and have fat tails, Blattberg
& Gonedes (1974), Platen & Rendek (2008).

Volatility changes with time and the changes are
unpredictable, Scott (1987).

Though persistent, volatility has a tendency of reverting to
a long - run average.

Range of research on European option pricing models
under stochastic volatility; Hull & White (1987), Scott
(1987), Wiggins (1987), Heston (1993), etc.

Adolfsson at. el (2009) extend the Heston model to pricing
American Options.

Multifactor models suggest that asset returns are driven by
many unpredictable processes.

The need to consider two or more stochastic volatility
processes.



The Problem Statement

@ The risk - neutral dynamics of the driving processes, S, v;
and vy,

dS = (r — q)Sdt + V1SdW; + /¥, SdW>,
dvy = [r161 — (k1 + A1)Va]dt 4 przor /N1 d Wy

+ /1 — p2401\/V1d W3,

dvy = [k202 — (k2 + A2)Vo|dt + p2402\/EdVV2

+ /1 — p3,02\/N2dWy. (1.1)

@ W, fori =1,---,4 are independent Wiener processes.

@ py3is correlation between W, and W3 whilst po4 denotes
the correlation between W2 and W4

@ No correlation between W; & W5, and W3 & Wj.



Pricing Partial Differential Equation

@ Wesetr=T —t,S=e*and C(r,x,vy,--

,Vn) to be the

pricing function. Exploiting the techniques of Jamshidian’s

(1992) vyields the pricing PDE

oC
_ X
—— =LC —-rC+ ]llen b(T,vl,vz)(qe - rK)’ (1.2)
or
where
L*(r 1v 1v>6+® 9 Bv6+® 9
- 973V o Ty T ey T %y,
5 2 N 82 +1 82 N 82
— BoVp— + Vi ——= + —Vp ——
220y, T2 ox2 T2 2ok T PRI G o
. 22 1, &2 E 22 @3)
Vog——— + —03V] —= + — o5V —= .
P g ey, T2 e 2722
and
O = k101, Pr=koth, PBr=r1+ 1 and [ =rz+ A2




Transition Probability Density PDE

@ Eqn (1.3) is solved subject to the initial and boundary

conditions,
C(0,x,V1,V2) = (¥ —=K)T, —o0 <X < o0, (1.4)
b(’r, Vl,Vz) K = (7‘ b(T Vl,Vz) V]_,Vz) (15)

@ Smooth pasting condition can also be imposed depending
on the particular problem considered.

@ After effecting the transformation S; = €% the transition
density function U (7, X, v1, V,) for the SDE system (1.1) is a
solution of the backward Kolmogorov PDE,

au
5 = LU (1.6)

@ Equation (1.6) is to be solved subject to the initial condition,

U(0,X,V1,V2; Xo,V1,0,V2,0) = 0(X — X0)d(V1 — V1,0)d(V2 — V20).
(1.7)
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Useful Result from PDE Theory

@ Duhamel’s principle states that the solution to the one
dimensional inhomogeneous parabolic PDE of the form,

ou
E = LU +f(7’,X),
subject to the initial condition,
U(0,x) = ¢(x),

can be represented as,

(1,X) / o(y)U(r,x —y)dy

-1-/0 /_Oof(g,y)U(T—&X—Y)dydE-

(1.8)

@ Here, L is a parabolic partial differential operator.




General Solution of Inhomogeneous PDE

@ By use of Duhamel’s principle, the solution of the American
call option pricing PDE (1.3) can be represented as,

C(77X5V17V2) — CE(7—7X7V17V2) + CP(7—7X7V17V2)7 (19)

where,

CE(T,x,vl,vg):e‘”/ / / (e“—K)Jr
0 0 —00

xU(7; X, V1, V2; U, Wy, Wp)dudw; dwo,

Cp(T,x,vl,Vz)z/ e"“‘@/ / / (ge" — 1K)
0 o Jo Inb(&,w1,wy)

xU(T — & X,V1,V2; U, Wy, Wp )dudwy dw,d €.

@ The 1 part of (1.9) is the European Option component
and the 2" is the Early Exercise premium.



Explicit Form of the Transition Density Function

@ A Fourier transform is applied to the log S variable followed
by Laplace transforms to the v variables of the PDE (1.6)
and solving the resulting system of PDE by the method of
characteristics.

@ Once the system of PDESs is solved, we use the tabulated
results in Abramowitz and Stegun (1964) to find the inverse
Laplace transform of the resulting solution.

@ Application of the inverse Fourier transform to the resulting
solution yields the transition density function as,

j=1 i
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The American Call Option Price

@ By letting V (7, S,v1,V2) = C(7,log S, vy, V2) and approximating
the early exercise boundary with the expression,

Inb(7,v1,V2) = bo(7) + b1(7)v1 + ba(7)vz, (1.11)

the value of the American call option can be expressed as,
V(T, S,vi, V2) ~ Vg (T, S,vi, V2) + VPA(T7 S,vi, V2)7 (1.12)

@ The component on the RHS can be represented as,

‘ Ve (7,S,V1,V2) = e 97SPy(7,S, vy, Va; K) — e TKPy(7, S, vy, Va; K), (1.13)‘
where,

Pi(,S, vy, V2 K) = % + % /0oo Re<gi(ts’v®\i’i]; n)e—inhK >dn’ 1o
forj=1,2.
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The Early Exercise Premium Component

@ The early exercise premium is given as

VR, S, vp) = /0 [ge ="~ 9SPY(r — £,'S, vi,v2ibo(£), b1(€), b2(€))

—re T TOKBY (- — €,S,v1, Vi bo(€), b1(€), bp())dE,  (L15)
with,
_ 1
PI(r = €8, v1, V2 bo(£), b1(€), b2(€)) = 5 (1.16)
L1 /oo Re(@i(‘r —£,S,vy,Vvy; "»_bl(f)y ba(€))e ' "P0(&) >dn,
7 Jo n
forj=1,2.
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Iterative Equations

@ Given equation (1.11), the value — matching condition can
be expressed as,
ePo(T)+ba(T)vitba(rIva _ V(r, eb0(7)+b1(7)vl+b2(T)V27Vl, Va).
(1.17)

@ The implicit time functions are found by solving the system,

bo(7) = In[V (7, @2 (M+Pa(TVatb2(TV2 'y, vo) 4 K] — by (7)va — ba(7)Va,

1
bl(T) = V_l ( In[V (7‘7 ebO(T)+b1(T)V1+b2(T)V2, V1,V2) + K] — bo(T) — bz(T)Vz\

J
1
ba(7) = Vs ( In[V (7, P FPa(TVatb2(T)V2 [y [yp) 4 K] — bg(T) — bl(T)Vl)
(1.18)
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Numerical Implementation

@ In implementing equations (1.12) and the system (1.18),
we treat the American option as a Bermudan option.

@ The time interval is partitioned into M — equally spaced
subintervals of length h = T /M.

@ It has been shown in Kim (1990) that the early exercise
boundary at maturity is,

b(0,v1, V) = max (%K, K) . (1.19)

By comparing coefficients, we can readily deduce that,
bo(0) = max <K, %K) . by(0)=0, and, by(0)=0.
(2.20)
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Numerical Implementation cont...

@ The discretized version of the pricing function is,
V(hm, S,v1,v;) = Ve (hm, S, v1,v5) + VH(hm, S, vi, V).
(1.21)

@ At each time we determine the three unknown boundary
terms, by’ = bo(hm), b" = by(hm) and bS' = by(hm).
@ We solve iteratively,

m m m
bgl = IN[V (hm, P ot tPZi-a¥2 vy vy) + K] — b _jvi — bJy_1va,

1 m m m
b b b
rlrjk = V_l (In[V(hm7 ePoutbiivatbaiaVz vy vy) 4 K] — bgjk — b2k71V2),

1 m m m
bzl = V_Z(I”[V(hmv ePou FPLVITR2U Y2 vy Vo) + K] — by — brﬂk‘”)'
(1.22)

@ We continuously repeat the iterative process until a
tolerance level is reached.
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Numerical Results

Parameter Value v;—Parameter Value v, — Parameter Value
K 100 0, 6% 0 8%
r 3% K1 3 K2 4
q 5% o1 10% o2 11%
T 0.5 P12 +0.5 P13 +0.5
M 200 A1 0 A2 0
v 20% v 20%

Table: Parameters used for the American call option. The v; column

contains are parameters for the first variance process whilst the v,

column contains parameters for the second variance process.
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Early Exercise Boundary Surface

Free Surface of the American Call Option

Cntayg

Figure: Early Exercise Surface of the American Call option when

Vo = 0.67%, P13

0.5 and pp4 = 0.5. All other parameters are as

presented in Table 1.1.
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Effects of Stochastic Volatility on the Early
Exercise Boundary

Comparing Early Exercise Boundaries of the American Call Option
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Figure: Exploring the effects of stochastic volatility on the early
exercise boundary of the American call option for varying correlation
coefficients when oggy = 0.3742, vi = 6% and v, = 8%. All other

parameters are provided in Table 1.1.
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Early Exercise Boundary Comparisons

Early Exercise boundary Comparison
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Figure: Comparing early exercise boundaries from the MOL and
Numerical integration approach when the two instantaneous
variances are fixed. Here, v; = 0.67%, v, = 13.33%, p13 = 0.5 and
p24 = 0.5 with all other parameters as given in Table 1.1.



Price Comparisons

Price Differences for the American Call Option
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Figure: Option prices from the Geometric Brownian motion minus
option prices from the Stochastic volatility model for varying
correlation coefficients. Here, oggy = 0.3742, vi = 6% and v, = 8%
with all other parameters provided in Table 1.1.
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Price Comparisons

S Numerical Integration MOL GBM

60 0.2036 0.2029  0.1850
80 2.4088 2.400 2.4154
100 9.8082 9.7918  9.9452
120 23.1069 23.0920 23.3006
140 40.4756 40.4686 40.5922
160 60 60 60
180 80 80 80
200 100 100 100

Table: American call option price comparisons when v; = 0.67%,
Vo = 13.33%, p13 = 0.5, p24 = 0.5. We have taken GBM volatility to
be oggm = 0.3741657 and this is found by using the formula

ocem = V01 + 6.



Summary

@ We have derived the integral representation of an
American call option when the underlying asset is driven
by two stochastic variance processes.

@ An explicit form of the transition density function has been
provided.

@ We approximated the three dimensional early — exercise
boundary by a multivariate log — linear function.

@ Numerical results and comparisons with alternative
methods have been presented.
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Possible Extensions

@ Incorporating more than two stochastic volatility processes.
@ Generalizing to Multiple assets under Multiple stochastic

volatility.
@ Performing empirical studies on multifactor models.
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