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Introduction (1)

@ High dimensional American options pricing and sensitivities
estimation are still challenging even under the Black-Scholes-Merton's

(BSM) model.
@ Two main methods under the BSM model
© Regression based method and its variations, e.g., Longstaff-Schwartz's

least-squares method, etc.
@ Bally et al.’s Malliavin calculus method.
@ The main idea of this method is to express a conditional expectation as
the ratio of two unconditional expectations.
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Introduction (2)

@ We discuss the pricing and sensitivity estimation of American options
under a special type of Levy processes - subordinated Levy processes.

@ A subordinated Levy process (SLP) is also called subordinated
Brownian motion (SBM) or time changed Brwonian motion.

@ Two typical such processes are normal inverse Gaussian (NIG) process
and variance gamma (VG) process.
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Introduction (3)

@ Empirical studies show that some Levy processes, e.g., generalized
hyperbolic (GH) processes, can fit real financial data much better
than the (geometric) Brownian motions.
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Introduction (3)

@ Empirical studies show that some Levy processes, e.g., generalized
hyperbolic (GH) processes, can fit real financial data much better
than the (geometric) Brownian motions.

@ Both NIG & VG processes are special cases of GH processes
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Introduction (10)

@ The integration by parts (IBP) property is valid for two square
integrable r.v.s F & G, denoted by IBP(F, G),

e if 3 a square integrable random weight 77£(G) such that

E(¢'(F)G) = E(¢(F)mr(G))

@ for any ¢ € C;°(IR)= the set of bounded and infinitely differentiable
functions.
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° E [H(F — &)t (G)]

E[H(F —a)mr(1)]
@ with the convention that E(G | F =a) =0 if
E[H(F —a)mp(1)] = 0;

E(G|F=a)=

Yongzeng Lai (ylai@wlu.ca)& Yiqi Wang (yiqiPricing and Hedging American Options under June 23, 2010



Introduction(11)

o Lemma 1 (Bally et al.): If both IBP(F,1) and IBP(F, G) hold, then

° E [H(F — &)t (G)]

E[H(F —a)mr(1)]

@ with the convention that E(G | F =a) =0 if
E[H(F —a)rr(1)] = 0

o H(x) = 1{0)(x), x € R - the Heaviside function.

E(G|F=a)=
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@ Lemma 2 (Bally et al.): If X = xexp(p + cA) with A ~ N(0,9),
then
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@ Lemma 2 (Bally et al.): If X = xexp(p + cA) with A ~ N(0,9),
then

£ 00500 = £ {00 [ 300

for f,g € ct.
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Single-asset case (1)

@ Consider an asset whose price process is given by the following
exponential subordinated Levy process

St =Soexp (uYe+oWy,), t > 0.

@ where {Y;} is a subordinator process.

@ Denote Fy = o(Y,,r € [0, t]), the c— field generated by
{Y,,r€[0,t]}.
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Single-asset case (

@ Proposition 1: Assume that S; is given as before. Let 0 < s < t,
g : R — R be a function with polynomial growth.
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g : R — R be a function with polynomial growth.

@ (1) The IBP(Ss, g(S:)) property holds, i.e.,
E [¢'(Ss)g(Se)] = E{¢p(S:)s[g](Se)}, Vg € CF°(R)
@ where £(S)AW, ,

mlel(S) = vy
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Single-asset case (2)

)

[

[

Proposition 1: Assume that S; is given as before. Let 0 < s < t,
g : R — R be a function with polynomial growth.

(1) The IBP(Ss, g(St)) property holds, i.e.,

E [¢'(Ss)g(Se)] = E{¢p(S:)s[g](Se)}, Vg € CF°(R)

where

7s[g](St) = %

with AW, ¢ = (Ye — Y)Wy, — Ye(Wy, — Wy,) 4+ 0Ys(Ye— Ye) =
YWy, — YsWy, + 0 Ye(Ye— Ys).
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Single-asset case (3)

@ (2) For fixed « > 0, let ¢ € CL(R) = {¢ € C}(R) and ¢ bounded}
be such that
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be such that
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o Let Y € C}(R) be such that ¢ | g ()= 1. Then,

°
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Single-asset case (3)

)

[
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(2) For fixed & > 0, let ¢ € C}(R) = {¢ € C}(R) and ¢ bounded }
be such that

supp(¢p') C Be(a) = (0 — €, +€) with ¢ > 0.

Let € C3(R) be such that ¢ |g (o= 1. Then,

E[¢/(S2)g(5:)] = E{p(s)llel(s0)}. Vo € CF(R)

where
n g(st)AlﬁWs,t

md[g](St) = oYs(Ye—Ye)
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Single-asset case (3)

)

(2) For fixed & > 0, let ¢ € C}(R) = {¢ € C}(R) and ¢ bounded }
be such that

supp(¢p') C Be(a) = (0 — €, +€) with ¢ > 0.

Let € C3(R) be such that ¢ |g (o= 1. Then,

[

[

E[¢/(S2)g(5:)] = E{p(s)llel(s0)}. Vo € CF(R)

@ where
n g(st)Aﬁws,t

nf[g]( t) = m
with AgWer = P(Ss)AWs e — §(Ss) Sso Vs (Ve — Y5).

(]
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Single-asset case (4)

@ (3) The IBP(Ss, %) property holds, i.e.,
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Single-asset case (4)

@ (3) The IBP(Ss, %) property holds, i.e.,

)

£ /(s £ |~ Efplsomlel(sa) Yo e GR)
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Single-asset case (4)

@ (3) The IBP(Ss, %) property holds, i.e.,

£ [o/(5) LI T g (s malel(50) . v € CRIR)
@ where
— . g(st) (AWs,t)2 Y:
7slg](5e) = YV, — V)2 | ovalVe— vy T AWs T
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Single-asset case

@ Theorem 1. (Conditional expectation formula without localization)
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Single-asset case (5)

@ Theorem 1. (Conditional expectation formula without localization)
@ (1) Forany 0 <s < t,a >0 and P,

_ Teel®)(a)

E[®(S5;)|Ss = «f m,
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Single-asset case (5)

@ Theorem 1. (Conditional expectation formula without localization)
@ (1) Forany 0 <s < t,a >0 and P,

E[D(S)[Ss = a] = 7111;55,1[&]((5)),
@ where
T, [f](a) = E |£(S,) H(Ss —a) AW,

aYs(Ye — Ys)Ss
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Single-asset case (6)

® (2) Forany0 <s<t,a>0and P,

R, e[®](@)Ts, ¢ [1]() — Rs,e[1](a) Ts,¢[P] ()
(Ts,e[1](a))?

IE [D(S,)]Ss = a] =
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Single-asset case (6)

® (2) Forany0 <s<t,a>0and P,

R, e[®](@)Ts, ¢ [1]() — Rs,e[1](a) Ts,¢[P] ()
(Ts,e[1](a))?

IE [D(S,)]Ss = a] =

@ where
Rs,¢[f](x) =

H(Ss - "‘) AVVs2t Y:
—E|f : W,,— —)|.
(St)gys(vt —Y,)S2 (avs(yt -Y,) +AWs: o

s
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Single-asset case (7)

o Lemma 3 (Localization)
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Single-asset case (7)

o Lemma 3 (Localization)
o Let  : R -Ry = [0,00) be a PDF and ¥ be its corresponding CDF.
@ Then, conditional expressions are also true if T ([f]|(«) is replaced by

)

T2, 07)(0) = £[7(50) (s, - + =MD gy, )]
@ and R [f](a) is replaced by

RS [f](w) = —E {f(st) [w(ss - w%

H(Ss —a) —¥(Ss — a) AWs%t Y;
+ oYs(Y: — Ys)S2 oYs(Ye — Yo) +AWs: - ra '

respectively.
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Single-asset case

@ Theorem 2: (Conditional expectation formula with localization)
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Single-asset case (8)

@ Theorem 2: (Conditional expectation formula with localization)

@ Let ¢ : R — [0,00) be a PDF and ¥ be its corresponding CDF. For
any 0 < s < t, « >0 and ¥, we have
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Single-asset case (8)

@ Theorem 2: (Conditional expectation formula with localization)

@ Let ¢ : R — [0,00) be a PDF and ¥ be its corresponding CDF. For
any 0 < s < t, « >0 and ¥, we have

~ RY[@]) ()T, [1](0) — RY,[1](2) T, [@] ()
2 ]
(T2[1](w))
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Single-asset case (8)

@ Theorem 2: (Conditional expectation formula with localization)

@ Let ¢ : R — [0,00) be a PDF and ¥ be its corresponding CDF. For
any 0 < s < t, « >0 and ¥, we have

@ and

R [P)(@) T [1](@) = RE L) T2 [P]()

% [D(Se)|Ss = o] = (T [1)( >>2
s, t &

@ where Tstp’t[@](oc) and ]Rlsp’t[cb] (a) are given in the above.
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Multi-asset case (1)

@ Consider a market model with d assets whose price processes are
given by the following exponential subordinated Levy processes
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Multi-asset case (1)

@ Consider a market model with d assets whose price processes are
given by the following exponential subordinated Levy processes

d
Siie = Sioexp | piYe+ Y Wy, |, i=1,--- .d,
=1
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Multi-asset case (1)

@ Consider a market model with d assets whose price processes are
given by the following exponential subordinated Levy processes

d
Siie = Sioexp | piYe+ Y Wy, |, i=1,--- .d,
=1
o where C = (c¢jj)dxd is @ matrix such that o = (0jj)gxqg = CC' is the
covariance matrix (e.g., C can be taken as the Cholesky
decomposition of 7).,
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Multi-asset case (1)

@ Consider a market model with d assets whose price processes are
given by the following exponential subordinated Levy processes

d
Siie = Sioexp | piYe+ Y Wy, |, i=1,--- .d,
=1
o where C = (c¢jj)dxd is @ matrix such that o = (0jj)gxqg = CC' is the
covariance matrix (e.g., C can be taken as the Cholesky
decomposition of 7).,

o {Y;} is a subordinator process. For simplicity, assume that C is lower
triangular, i.e., ¢ = 0 for i < j.
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Multi-asset case (1)

@ Consider a market model with d assets whose price processes are
given by the following exponential subordinated Levy processes

d
Si.t = Si.oexp (,uiyt+ ZC;/W/;vt> ,i=1---,d,
=1
o where C = (c¢jj)dxd is @ matrix such that o = (0jj)gxqg = CC' is the
covariance matrix (e.g., C can be taken as the Cholesky
decomposition of 7).,

o {Y;} is a subordinator process. For simplicity, assume that C is lower
triangular, i.e., ¢ = 0 for i < j.
@ Thus,

Si.t = Si.oexp (ViYH- ZC,'/VV[;yt> i=1---d,
I=1
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Multi-asset case (

@ Denote i = o (Y, r €0, t]).

Yongzeng Lai (ylai@wlu.ca)& Yiqi Wang (yiqiPricing and Hedging American Options under June 23, 2010 24 / 42



Multi-asset case (

@ Denote i = o (Y, r €0, t]).
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functions with polynomial growth.
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Multi-asset case (2)

@ Denote i = o (Y, r €0, t]).
o Let 0 <s <t a>0and ® € gy(RY) - the set of measurable
functions with polynomial growth.

@ To express the conditional expectation E [®(S5;)|Ss = a], we try to
use the results in one-dimensional case.
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functions with polynomial growth.

@ To express the conditional expectation E [®(S5;)|Ss = a], we try to
use the results in one-dimensional case.
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coordinates conditional on F;.
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Multi-asset case (

@ Denote i = o (Y, r €0, t]).

o Let 0 <s <t a>0and ® € gy(RY) - the set of measurable
functions with polynomial growth.

@ To express the conditional expectation E [®(S5;)|Ss = a], we try to
use the results in one-dimensional case.

@ To this purpose, we consider an auxiliary process S with independent
coordinates conditional on F;.

o Let pr = (p1.t, - -+ , pg;t) be a fixed C! function (to be determined
later) and let

Si.e = Sioexp (Ui Ye + pie + ciWiy,), i=1,--- ,d,
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Multi-asset case (3)

o Lemma 4 (Relationship between {S;} & {S5:})
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Multi-asset case (3)

o Lemma 4 (Relationship between {S;} & {S5:})

° DenoteE:(”E,-J-),E,-j:%,/,jzll... d.
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Multi-asset case (3)

o Lemma 4 (Relationship between {St} & {5:})
o Denote C = (¢;), ¢ = < Sjj=1,---,d.

o lfC=C"1 exists, then any t > 0,

S: = F(5;) and S, = Gi(S:) = F1(Se)
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Multi-asset case (3)

o Lemma 4 (Relationship between {S;} & {S;})

@ Denote C = (Gj), j = %,i,jzl,--- .d.
o IfC=C"1 exists, then any t > 0,

St =Fe(Se) and S¢ = Ge(Se) = F, X(Se)
@ where F;, G; : ]Rd+ — ]Ri are given by

In Fe(y) = —Ept+ EIny—}— (I — E)(Inso +uYy),
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Multi-asset case (3)

o Lemma 4 (Relationship between {S;} & {S;})

o Denote C = (¢;), ¢ = %,i,jzl,--- .d.
o IfC=C"1 exists, then any t > 0,
St = Fe(S:) and S; = G(S;) = F1(Sy)
@ where F;, G; : ]Rd+ — ]Ri are given by
InFe(y) = —Cps+ Clny + (1 — C)(InSo + uYe),

@ and
InGe(z) =pt+0Inz+ (I —0)(InSo + uYe)

respectively,
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Multi-asset case (3)

o Lemma 4 (Relationship between {S;} & {S;})

° DenoteE:(E,-J-),’E,-j:%,/,jzll... d.

o IfC=C"1 exists, then any t > 0,
St = Fe(S:) and S; = G(S;) = F1(Sy)
@ where F;, G; : ]Rd+ — ]Ri are given by
InFe(y) = —Cps+ Clny + (1 — C)(InSo + uYe),

@ and
InGe(z) =pt+0Inz+ (I —0)(InSo + uYe)
respectively,
@ W|thy:(y1, 'yd)'zz(zll... 1Zd) ERi:{UERd,
u>0,i=1--,d},
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Multi-asset case (3)

o Lemma 4 (Relationship between {S;} & {S;})

C

° DenoteE:(E,-J-),’E,-j:?fj,/,jzll... d.

o IfC=C"1 exists, then any t > 0,
St = Fe(S:) and S; = G(S;) = F1(Sy)
@ where F;, G; : ]Rd+ — ]Ri are given by
InFe(y) = —Cps+ Clny + (1 — C)(InSo + uYe),

@ and
InGe(z) =pt+0Inz+ (I —0)(InSo + uYe)
respectively,
o withy=(y1,-- ,yd4),z=(z1,- -+ ,z4) € R? = {u € RY,
u>0,1=1,--- ,d},
@ andInu=(Inuy, -+ ,Inug) ify; >0fori=1,---,d.
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Multi-asset case (4)

o Lemma 4 =
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Multi-asset case (4)

o Lemma 4 =
d Cir
d . - HI"‘ZEHPM Y:
= . . 1=1 .
® Sit = Fiie(S¢) = Sioet ] | 55e =
/=1 '

1,---,d,
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Multi-asset case (4)

o Lemma 4 =

d Cit
d . - HI"‘ZEHPM Yi
~ ) : =1 .
® Siit = Fiie(St) = 5i;OeH'YtH 50€ I
=1 '
]_' -eed,
~ d 5/ Y, Eil
_ — i H A ;o —
® Sy = Gi;t(st) —Si;Oep‘tﬂ <?;oe w t) =1 ,d.
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Multi-asset case (4)

@ Theorem 3: (Conditional expectation formula without localization)
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Multi-asset case (4)

@ Theorem 3: (Conditional expectation formula without localization)
o () Forany 0 <s <t a€R? and ® € ¢,(IRY), we have

T, [P](a)

E[@(St)|55 = Dé] = m,
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Multi-asset case (4)

@ Theorem 3: (Conditional expectation formula without localization)
o () Forany 0 <s <t a€R? and ® € ¢,(IRY), we have

ED(5e)[Ss = o] = %
@ where
Ts[fl(a) = E f(st)ﬁ H(gl.s ‘Xl)N AW
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Multi-asset case (4)

@ Theorem 3: (Conditional expectation formula without localization)
o () Forany 0 <s <t a€R? and ® € ¢,(IRY), we have

ED(5e)[Ss = o] = %

@ where

d
(Si,s — @)
T ,t[f]( = AVVs,if;I
’ II;{C/IYS Yt_ YS)S/;S

o with S; = G,(S;), @ = Gs(«), and H(x) the same as before,

o and AW ¢ = YeiWpy, — YsWiy, + cn Yo (Y — Y5).
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Multi-asset case (5)

@ 2)Forany0<s<tacR? ®eceyp(RY), andi=1,---,d, we
have
90, E [©(5)[S, =]
~ 8 R [P (@) Ts ¢ [1] (@) — Rs,g/[1) () T, ¢ [P] (&)
= (Ts.[1] (w))? '
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Multi-asset case (5)

@ 2)Forany0<s<tacR? ®eceyp(RY), andi=1,---,d, we
have

0, E [®(S:)|Ss = 4]
0 Ry [ @] () T [1] (&) — Ry rs[1] () T, ¢ [P] ()
= % (Ts,t[l]@‘))z '

@ where T [f](«) is given above and

H(S.s — @)
anYs(Ye — Ys)Ss

Rqi[f](a) = —E {f(St)

il & HSs—§
AW _t] 5 [XJ)~ AWs,t;f} :
=116 Ys(Ye = ¥5)Sjs

<AWs,t;l)2
9] Ys( Yt - Ys)
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Multi-asset case (6)

o Lemma 5 (Localization)
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Multi-asset case (6)

o Lemma 5 (Localization)

o Let ip(x H¢, x;), where x = (xq,- -+ ,xq) € RY, each
PR —>]R+ = [0,00) is a PDF with its corresponding CDF ¥;.
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Multi-asset case (6)

o Lemma 5 (Localization)

o Let ip(x H¢, x;), where x = (xq,- -+ ,xq) € RY, each

PR —>]R+ = [0,00) is a PDF with its corresponding CDF ¥;.

@ Then the localizations of Ts ¢[f](«) and R ;./[f](«) defined above,
have the following forms
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Multi-asset case (6)

o Lemma 5 (Localization)

o Let ip(x H¢, x;), where x = (xq,- -+ ,xq) € RY, each

PR —>]R+ = [0,00) is a PDF with its corresponding CDF ¥;.

@ Then the localizations of Ts ¢[f](«) and R ;./[f](«) defined above,
have the following forms

T o[](0) = T, [f](w)
. [f(st)f[ (1/},-(5,-;5 o+ MG ) —‘I’,-(S,-j—?ii)Astt”)]

Cji Ys(Yt - YS)S
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Multi-asset case (7)

@ and

Re e[ f](a) = ]Rf,t;l[f] () = —E {f(St) [¢/(§/;s — ) oY (Ayi/vit;/ 3,

S ) (S AWZ, Y
(e —0) = VSta ) (W, Y
C//Ys(yt - Y5)<5/;5)

cnYs(Ye—Ys) c

d ~ H(Sgs —&q) — ¥q(Sqs — &q)
% 5 < — ’DZ + q.;s q q 3,5 q AWS ) ,
| |#l (l[&,( q; q) Ces Ys(Yt _ Ys)sq;s tq

respectively.
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Multi-asset case

@ Theorem 4: (Conditional expectation formula with localization)
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Multi-asset case

@ Theorem 4: (Conditional expectation formula with localization)

@ Forany0<s<t,a€ ]Ri, ® € ¢,(RY), and ¢ € Ly (the set of
d — dim . localization functions in product forms),
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Multi-asset case (8)

@ Theorem 4: (Conditional expectation formula with localization)

@ Forany0<s<t,a€ ]Ri, ® € ¢,(RY), and ¢ € Ly (the set of
d — dim . localization functions in product forms),

@ we have
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Multi-asset case (8)

@ Theorem 4: (Conditional expectation formula with localization)

@ Forany0<s<t,a€ ]Ri, ® € ¢,(RY), and ¢ € Ly (the set of
d — dim . localization functions in product forms),

@ we have

P
Elo(sils —a) = 1 [E]]((:c)) |
@ and foreachi=1,--- ,d, |
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Multi-asset case (8)

@ Theorem 4: (Conditional expectation formula with localization)

@ Forany0<s<t,a€ ]Ri, ® € ¢,(RY), and ¢ € Ly (the set of
d — dim . localization functions in product forms),

@ we have

P
Elo(S1S, — a ifﬂﬁ'
@ and foreachi=1,--- ,d, |

9, E[®(S,)]S: = af
a9 @TE 1)) ~ RE, 1) (@) TE @) (0)

(T4 1))’

@ where Tit[f] (a) and ]Rlsp’t;,[f] (a) are defined earlier.

31/ 42

Yongzeng Lai (ylai@wlu.ca)& Yiqi Wang (yiqiPricing and Hedging American Options under June 23, 2010



Algorithms (1)

@ The American option with payoff ® and maturity T is usually
approximated by a Bermudan option with price V(0, Sp) and delta
A(0, Sp), where Sy is the initial underlying asset price.
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approximated by a Bermudan option with price V(0, Sp) and delta
A(0, Sp), where Sy is the initial underlying asset price.

@ To find V/(0,Sp) and A(0, Sp), we can use the formulas for the
conditional expectations discussed in the previous sections.
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Algorithms (1)

@ The American option with payoff ® and maturity T is usually
approximated by a Bermudan option with price V(0, Sp) and delta
A(0, Sp), where Sy is the initial underlying asset price.

@ To find V/(0,Sp) and A(0, Sp), we can use the formulas for the
conditional expectations discussed in the previous sections.

@ To this end, we equally subdivide the interval [0, T] into m(> 1)
subintervals: 0 = tg < t; < --- <ty =T, tj = jh with step size
h=T/m.
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Algorithms

@ Then, V(0, Sp) is approximated by V;(Sp), where V;(Sjy) is defined

recursively as follows:
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Algorithms (2)

@ Then, V(0, Sp) is approximated by V;(Sp), where V;(Sjy) is defined

recursively as follows:

Vm(ST) = ®(S7),
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Algorithms (2)

@ Then, V(0, Sp) is approximated by V;(Sp), where V;(Sjy) is defined

recursively as follows:

Vm(ST) = ®(S7),

o Vi(Sin) = max{®(Sp), e "E [Visa(S(ionyn)|Sin| )
J:m—]_' ,]_'0;
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Algorithms (2)

@ Then, V(0, Sp) is approximated by V;(Sp), where V;(Sjy) is defined
recursively as follows:
Vin(ST) = ®(57),

o Vi(Sin) = max{®(Sp), e "E [Visa(S(ionyn)|Sin| )
J:m—]_' ,]_'0;
@ and A(0, Sp) is approximated by

A(So) = E[A(Sh)],
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Algorithms (2)

@ Then, V(0, Sp) is approximated by V;(Sp), where V;(Sjy) is defined
recursively as follows:
Vin(ST) = ®(57),

o Vi(Sin) = max{®(Sp), e "E [Visa(S(ionyn)|Sin| )
J:m—]_' ,]_'0;
@ and A(0, Sp) is approximated by

A(So) = E[A(Sh)],

[ ad@)s, VA(SH) < (S))
A(Sh) o { e"”amE [Vj(szh)|5h = DC] |0<:5h' if \/11(;;,) > (I)(Sljh)
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Algorithms (3)

@ Formulas for the conditional expectation E [\/j+1(5(j+1)h>|5jh} and
the derivative 0, E [V2(San)|Sh = a] are given earlier.
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the derivative 0, E [V2(San)|Sh = a] are given earlier.
o Both E [vjﬂ( 4Dk )|5J,,} and 9 E [Va(Spn)|Sh = a] can be

approximated by Monte Carlo or quasi-Monte Carlo simulation
methods.
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methods.
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Algorithms (3)

@ Formulas for the conditional expectation E [\/j+1(5(j+1)h)|5jh} and
the derivative 0, E [V2(San)|Sh = a] are given earlier.
o Both E [vjﬂ( 4Dk )|5J,,} and 9 E [Va(Spn)|Sh = a] can be

approximated by Monte Carlo or quasi-Monte Carlo simulation
methods.

@ Thus, we need the samples of the asset prices, which are given by
0

d
Si.t = Si.oexp (ViYH- ZC,'/VV[;yt> i=1--- d.
=1
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Algorithms (4)

@ The algorithm is given in the following steps:
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Algorithms (4)

@ The algorithm is given in the following steps:
o 1% Generating samples of {Y;}: Yﬁ.‘, j=1- ,mk=1---,N.

time sample
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Algorithms (4)

@ The algorithm is given in the following steps:
o 1% Generating samples of {Y;}: Yﬁ.‘, j=1- ,mk=1---,N.

time sample

@ 20: Generating samples of {W,.y,} :

VVI-;Yt,i':]_'...,dj;j:]_,...'m; k:]_,'N

dimension time sample
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Algorithms (4)

@ The algorithm is given in the following steps:
o 1% Generating samples of {Y;}: Yﬁ.‘, j=1- ,mk=1---,N.

time sample

@ 20: Generating samples of {W,.y,} :

VVI-;Yt,i':]_'...,dj;j:]_,...'m; k:]_,'N

dimension time sample

@ 3% Computation of {S;;} :

i

k k
Sty = Sioexp | uiYe + Y ciW.yx
I=1 !
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Algorithms

o 4% Computation of {S;.;}:

§ilft,- = Sioexp <Viytf + Pisy; + Cii W;;Y§> .
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Algorithms (5)

o 4% Computation of {S;.;}:
§ilft,- = Sipexp <Viytf + pii; + Cii W;;Y§> :

o 59 Computation of {AW; } :

AW, j i = AW - Y.

RN tit1 tit1

= Y5 Wiy — YEW e+ ciYE(YE
e " ti1 "
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Algorithms (

@ 6°: Computation of {V;(S;)}: use formulas given earlier, where for
j=m-1,---,10,
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Algorithms (6)

@ 6°: Computation of {V;(S;)}: use formulas given earlier, where for
j=m-1,---,1,0

°

Tfjvfjﬂ[vj+l](‘x)

T4 (1] ()

E [Vj+1(59-+1)|59 = 0‘] |a:stkj =
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Algorithms (6)

@ 6°: Computation of {V;(S;)}: use formulas given earlier, where for
j=m-1,---,10,

o
Tt 4, [Vita](a)
EVii1(S:.,)|S: = a] |,_op = —ttt
[ J+1( tj+1)| tj ]|a75{‘j th,tjﬂ[]-](o‘)
*)
d H(Sp.e.—))
E VJ+1(5tJ“)HU//Yt(Yt- J*Yt-)gl AWy, Yijioil
=1 jN U+ j
B d H(Sp.e.—))
J
: [EUIIYQ(Y%lYtj)g/t AWYf Yl
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Algorithms (6)

o 6% Computatlon of {V;(S)}: use formulas given earlier, where for
j=m-—1,---,10,

"]
Tt b0, [Vis1] ()
E[Vii1(Se. )|Se = al |, _cx = —222
[ J+1( f1+1)| t; ]|a75{‘j th,tjﬂ[]-](ﬂ()
-]
d H(5),—)
E J'f‘1 5tj+1 gallYtj( J+1 Ytj)gl;tjAWYtj:Ythrl;I
g H(Sp )
: EUI/Y:(Y9+1 Y)Sl,tjA Yy Yl
)

d . H(S,.-5.)
N . q g Th .
i VJ+1<5t,-+1>I, Loivgtvg. —varss, AW
_ ity

G+1

~ \/.(Sky —
~ Vilog) = H(5], —5F,)
t; i

Z IH q : {7 <q AVVlj'q

q= UHY Ytj)sl;tj J

(t+1_
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Algorithms (7)

@ 7% Computation of option price V/(0, Sp):

V(O,So) ~ Vo(So) = max <CD(50),% i V1(Sé)> ,
k=1

where
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Algorithms (7)

@ 7% Computation of option price V/(0, Sp):

V(O,So) ~ Vo(So) = max <CD(50),% i V1(Sé)> ,
k=1

where
o Vy(SE)=®(Sk), k=1,--- N, and

0 V(SE) = max ((SK), e V(5)) j=m— 1,1
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Algorithms (8)

e 80: Computation of option delta values
A(So) = (A1(S0), -+ . Aa(S0)), where
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Algorithms (8)

e 80: Computation of option delta values
A(So) = (A1(S0), -+ . Aa(S0)), where

N
Ai(So) ~ Bi(So) = 2 «(S5),
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Algorithms (8)

e 80: Computation of option delta values
A(So) = (A1(S0), -+ . Aa(S0)), where

[*]
N
[*]
[ 2@, f Us(s5) < @(s%)
) =\ e E[Va(5,)[Sy = o] |,sg. 1 Un(SK) > @(SE)
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Algorithms (9)

@ and

atxiE [V2(St2)|5t1 =

/ tl
a Sk ZUII

It'l

Rt1,t2;/[q>]<5§)Ttl,t2[ ](Stl;) - Rtl,t2;/[1]<5tk1>Tt1,t2 [q>]<5tk1>
(To,0[1](S4))"
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Algorithms (9)

@ and

atxiE [V2(St2)|5t1 =

/ tl
a Sk ZUII

It'l

Rt1,t2;/[q>]<5§)Ttl,t2[ ](Stl;) - Rtl,t2;/[1]<5tk1)Tt1,t2 [q>]<5tk1)
(To,0[1](S4))"

1 if 1—[ H(Sf, — Sy
N = 1o Y (Y — v S

Ity

k
Ttl tz 5 tl

Wl,l;qy
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Algorithms (10)

o
N (quh gl(tl)
]Rt1 to; /[f Z 2 q/\v9 q\cq
g=1 oy Ytl ( Ytz - Ytl)sl t1
(AVVI,I;q) + AW, 1. — ﬁ X
oYy (Yo, — Yy) o
d (sg tl) SrlI( tl) W 1
nl;q-

n=1,n#/ Onn Ytl(yt2 - Ytl)sg [51
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Question

@ When estimating an expectation, E(X), of a r.v. or r. vector,
variance or std error or root-mean-square error can be used to
measure the "error”.
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@ When estimating an expectation, E(X), of a r.v. or r. vector,

variance or std error or root-mean-square error can be used to
measure the "error”.

@ What can be used when estimating the ratio of two expectations
E(X)5

EY) "
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uestion

@ When estimating an expectation, E(X), of a r.v. or r. vector,
variance or std error or root-mean-square error can be used to
measure the "error”.

@ What can be used when estimating the ratio of two expectations
E(X)5

E(Y)"
@ Other type of Levy processes?
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