Analysis of Fourier Transform Valuation Formulas and Applications

Ernst Eberlein

Freiburg Institute for Advanced Studies (FRIAS) and Center for Data Analysis and Modeling (FDM) University of Freiburg

(joint work with Kathrin Glau and Antonis Papapantoleon)

6th World Congress of the Bachelier Finance Society Toronto June 22-26, 2010

The model

Volatility surface

Volatility surfaces of foreign exchange and interest rate options

- Volatilities vary in strike (smile)
- Volatilities vary in time to maturity (term structure)
- Volatility clustering

The model

Fourier and Laplace based valuation formulas

Carr and Madan (1999)

Raible (2000)

Borovkov and Novikov (2002): exotic options

Hubalek, Kallsen, and Krawczyk (2006): hedging

Lee (2004): discretization error in fast Fourier transform

Hubalek and Kallsen (2005): options on several assets

Biagini, Bregman, and Meyer-Brandis (2008): indices

Hurd and Zhou (2009): spread options

Eberlein and Kluge (2006): interest rate derivatives

Eberlein and Koval (2006): cross currency derivatives

Eberlein, Kluge, and Schönbucher (2006): credit default swaptions

Harmonic analysis (Parseval's formula)

The model

Valuation

Payoff functions and processes

continued

Interest rate

Exponential semimartingale model

 $\mathfrak{B}_T = (\Omega, \mathcal{F}, \mathbf{F}, P)$ stochastic basis, where $\mathcal{F} = \mathcal{F}_T$ and $\mathbf{F} = (\mathcal{F}_t)_{0 \le t \le T}$. Price process of a financial asset as exponential semimartingale

$$S_t = S_0 e^{H_t}, \quad 0 \le t \le T. \tag{1}$$

 $H = (H_t)_{0 \le t \le T}$ semimartingale with canonical representation

$$H = B + H^{c} + h(x) * (\mu^{H} - \nu) + (x - h(x)) * \mu^{H}.$$
 (2)

For the processes B, $C = \langle H^c \rangle$, and the measure ν we use the notation

$$\mathbb{T}(H|P) = (B, C, \nu)$$

which is called the triplet of predictable characteristics of H.

The model

Valuation

Payoff functions and processes

continued

Interest rate

Alternative model description

$$\mathcal{E}(X) = (\mathcal{E}(X)_t)_{0 \le t \le T}$$
 stochastic exponential

$$S_t = \mathcal{E}(\widetilde{H})_t, \quad 0 \le t \le T$$

 $dS_t = S_{t-}d\widetilde{H}_t$

where

$$\widetilde{H}_t = H_t + rac{1}{2}\langle H^c
angle_t + \int_0^t \int_{\mathbb{R}} (e^x - 1 - x) \mu^H (ds, dx)$$

Note

$$\mathcal{E}(\widetilde{H})_t = \exp\left(\widetilde{H}_t - \frac{1}{2}\langle\widetilde{H}^c\rangle_t\right) \prod_{0 < s \le t} (1 + \Delta\widetilde{H}_s) \exp(-\Delta\widetilde{H}_s)$$

Asset price positive only if $\Delta \widetilde{H} > -1$.

The model

Valuation

Payoff functions and processes

Continued

nterest rate derivatives

Martingale modeling

Let $\mathcal{M}_{loc}(P)$ be the class of local martingales.

Assumption (\mathbb{ES})

The process $\mathbb{1}_{\{x>1\}}e^x * \nu$ has bounded variation.

Then

$$S = S_0 e^H \in \mathcal{M}_{loc}(P) \Leftrightarrow B + \frac{C}{2} + (e^x - 1 - h(x)) * \nu = 0.$$
 (3)

Throughout, we assume that P is an equivalent martingale measure for S.

By the *Fundamental Theorem of Asset Pricing*, the value of an option on *S* equals the *discounted expected payoff* under this martingale measure.

We assume zero interest rates.

The model

Valuation

Payoff functions and processes

continued

Exolic options

derivatives

Supremum and infimum processes

Let $X = (X_t)_{0 \le t \le T}$ be a stochastic process. Denote by

$$\overline{X}_t = \sup_{0 \le u \le t} X_u$$
 and $\underline{X}_t = \inf_{0 \le u \le t} X_u$

the supremum and infimum process of X respectively. Since the exponential function is monotone and increasing

$$\overline{S}_{T} = \sup_{0 \le t \le T} S_{t} = \sup_{0 \le t \le T} \left(S_{0} e^{H_{t}} \right) = S_{0} e^{\sup_{0 \le t \le T} H_{t}} = S_{0} e^{\overline{H}_{T}}.$$
 (4)

Similarly

$$\underline{S}_{T} = S_{0} e^{\underline{H}_{T}}.$$
 (5)

The model

Valuation

Payoff functions and processes

Continued

Interest rate

Valuation formulas – payoff functional

We want to price an option with payoff $\Phi(S_t, 0 < t < T)$, where Φ is a measurable, non-negative functional.

Separation of payoff function from the underlying process:

Example

Fixed strike lookback option

$$(\overline{S}_{T} - K)^{+} = (S_{0} \, \mathrm{e}^{\overline{H}_{T}} - K)^{+} = \left(\mathrm{e}^{\overline{H}_{T} + \log S_{0}} - K\right)^{+}$$

- The *payoff function* is an arbitrary function $f: \mathbb{R} \to \mathbb{R}_+$; for example $f(x) = (e^x - K)^+$ or $f(x) = \mathbb{1}_{\{e^x > B\}}$, for $K, B \in \mathbb{R}_+$.
- 2 The underlying process denoted by X, can be the log-asset price process or the supremum/infimum or an average of the log-asset price process (e.g. X = H or $X = \overline{H}$).

Valuation

Valuation formulas

Consider the option price as a function of S_0 or better of $s = -\log S_0$

X driving process ($X = H, \overline{H}, \underline{H}$, etc.)

$$\Rightarrow \qquad \Phi(S_0 e^{H_t}, 0 \le t \le T) = f(X_T - s)$$

Time-0 price of the option (assuming $r \equiv 0$)

$$\mathbb{V}_f(X;s) = E\big[\Phi(S_t, 0 \le t \le T)\big] = E[f(X_T - s)]$$

Valuation formulas based on Fourier and Laplace transforms

Carr and Madan (1999) plain vanilla options

Raible (2000) general payoffs, Lebesgue densities

In these approaches: Some sort of continuity assumption (payoff or random variable)

The model

Valuation

Payoff functions and processes

Continued

nterest rate

Valuation formulas – assumptions

moment generating function of X_T $M_{X_{\tau}}$

$$g(x) = e^{-Rx} f(x)$$
 (for some $R \in \mathbb{R}$) dampened payoff function

 $L^1_{bc}(\mathbb{R})$ bounded, continuous functions in $L^1(\mathbb{R})$

Assumptions

- (C1) $g \in L^1_{bc}(\mathbb{R})$
- (C2) $M_{X_{\tau}}(R)$ exists
- (C3) $\widehat{g} \in L^1(\mathbb{R})$

Valuation

Valuation formulas

Theorem

Assume that (C1)–(C3) are in force. Then, the price $\mathbb{V}_f(X;s)$ of an option on $S=(S_t)_{0\leq t\leq T}$ with payoff $f(X_T)$ is given by

$$\mathbb{V}_f(X;s) = \frac{e^{-Rs}}{2\pi} \int_{\mathbb{R}} e^{ius} \varphi_{X_T}(-u - iR) \, \widehat{f}(u + iR) du, \tag{6}$$

where φ_{X_T} denotes the extended characteristic function of X_T and \hat{f} denotes the Fourier transform of f.

The model

Valuation

Payoff functions and processes

continued

Interest rate

Discussion of assumptions

Alternative choice: (C1')
$$g \in L^1(\mathbb{R})$$
 (C3') $\widehat{e^{R\cdot}P_{X_T}} \in L^1(\mathbb{R})$

(C3')
$$\Longrightarrow e^{R.}P_{X_T}$$
 has a cont. bounded Lebesgue density

Recall: (C3)
$$\widehat{g} \in L^1(\mathbb{R})$$

Sobolov space

$$H^1(\mathbb{R}) = \{g \in L^2(\mathbb{R}) \mid \partial g \text{ exists and } \partial g \in L^2(\mathbb{R})\}$$

Lemma

$$g \in H^1(\mathbb{R}) \Longrightarrow \widehat{g} \in L^1(\mathbb{R})$$

Similar for the Sobolev–Slobodeckij space $H^{S}(\mathbb{R})$ $(s > \frac{1}{2})$

The mode

Valuation

Payoff function and processes

continued

nterest rate

Examples of payoff functions

Example (Call and put option)

Call payoff
$$f(x) = (e^x - K)^+$$
, $K \in \mathbb{R}_+$,
$$\widehat{f}(u + iR) = \frac{K^{1+iu-R}}{(iu-R)(1+iu-R)}, \qquad R \in I_1 = (1,\infty).$$

Similarly, if
$$f(x) = (K - e^x)^+$$
, $K \in \mathbb{R}_+$,
$$\widehat{f}(u + iR) = \frac{K^{1+iu-R}}{(iu-R)(1+iu-R)}, \qquad R \in I_1 = (-\infty, 0). \tag{8}$$

The mode

Valuation

Payoff functions and processes

continued

Interest rate

(7)

Example (Digital option)

Call payoff $\mathbb{1}_{\{e^x > B\}}$, $B \in \mathbb{R}_+$.

$$\widehat{f}(u+iR) = -B^{iu-R} \frac{1}{iu-R}, \qquad R \in I_1 = (0,\infty).$$
 (9)

Similarly, for the payoff $f(x) = \mathbb{1}_{\{e^x < B\}}$, $B \in \mathbb{R}_+$,

$$\widehat{f}(u+iR) = B^{iu-R} \frac{1}{iu-R}, \qquad R \in I_1 = (-\infty, 0).$$
 (10)

The model

Valuation

Payoff functions and processes

continued

Exotic options

derivatives

References

Example (Double digital option)

The payoff of a double digital option is $\mathbb{1}_{\{B < e^x < \overline{B}\}}$, \underline{B} , $\overline{B} \in \mathbb{R}_+$.

$$\widehat{f}(u+iR) = \frac{1}{iu-R} \left(\overline{B}^{iu-R} - \underline{B}^{iu-R} \right), \qquad R \in I_1 = \mathbb{R} \setminus \{0\}. \tag{11}$$

Example (Asset-or-nothing digital)

Payoff
$$f(x) = e^x \mathbb{1}_{\{e^x > B\}}$$

$$\widehat{f}(u+iR) = -\frac{B^{1+iu-R}}{1+iu-R}, \quad R \in I_1 = (1,\infty)$$

Similarly
$$f(x) = e^x \mathbb{1}_{\{e^x < B\}}$$

$$\hat{f}(u+iR) = \frac{B^{1+iu-R}}{1+iu-R}, \quad R \in I_1 = (-\infty, 1)$$

The model

Valuation

Payoff functions and processes

continued

Interest rate

References

Example (Self-quanto option)

Call payoff
$$f(x) = e^x(e^x - K)^+$$

$$\widehat{f}(u+iR) = \frac{K^{2+iu-R}}{(1+iu-R)(2+iu-R)}, \quad R \in I_1 = (2,\infty)$$

Non-path-dependent options

European option on an asset with price process $S_t = e^{H_t}$

Examples: call, put, digitals, asset-or-nothing, double digitals, self-quanto options

$$\longrightarrow$$
 $X_T \equiv H_T$, i.e. we need φ_{H_T}

Generalized hyperbolic model (GH model): Eberlein, Keller (1995), Eberlein, Keller, Prause (1998), Eberlein (2001)

$$\varphi_{H_1}(u) = e^{iu\mu} \left(\frac{\alpha^2 - \beta^2}{\alpha^2 - (\beta + iu)^2} \right)^{\lambda/2} \frac{K_{\lambda} \left(\delta \sqrt{\alpha^2 - (\beta + iu)^2} \right)}{K_{\lambda} \left(\delta \sqrt{\alpha^2 - \beta^2} \right)}$$

$$I_2 = \left(-\alpha - \beta, \alpha - \beta \right)$$

$$\varphi_{H_T}(u) = \left(\varphi_{H_1}(u) \right)^T$$

similar: NIG. CGMY. Meixner

The model

Valuation

Payoff functions and processes

continued

Exotic options

derivatives

Non-path-dependent options II

Stochastic volatility Lévy models:

Carr, Geman, Madan, Yor (2003) Eberlein, Kallsen, Kristen (2003)

Stochastic clock $Y_t = \int_0^t y_s ds$ $(y_s > 0)$ e.g. CIR process

$$dy_t = K(\eta - y_t)dt + \lambda y_t^{1/2}dW_t$$

Define for a pure jump Lévy process $X = (X_t)_{t>0}$

$$H_t = X_{Y_t} \quad (0 \le t \le T)$$

Then

$$\varphi_{H_t}(u) = \frac{\varphi_{Y_t}(-i\varphi_{X_t}(u))}{(\varphi_{Y_t}(-iu\varphi_{X_t}(-i)))^{iu}}$$

The mode

Valuation

Payoff functions and processes

continued

Interest rate

Classification of option types

Lévy model $S_t = S_0 e^{H_t}$

payoff	payoff function	distributional properties
$(S_T - K)^+$ call	$f(x)=(e^x-K)^+$	P_{H_T} usually has a density
$\mathbb{1}_{\{S_T>B\}}$ digital	$f(x) = \mathbb{1}_{\{e^x > B\}}$	_"_
$\left(\overline{S}_{\mathcal{T}} - \mathcal{K} ight)^+$ lookback	$f(x)=(e^x-K)^+$	density of $P_{\overline{H}_{7}}$?
$\begin{array}{l} \mathbb{1}_{\{\overline{S}_T > B\}} \\ \text{digital barrier} \\ = \text{one touch} \end{array}$	$f(x) = \mathbb{1}_{\{e^x > B\}}$	_"_

he model

Valuation

Payoff functions and processes

continued

Exotic options

nterest rate erivatives

Valuation formula for the last case

Payoff function f maybe discontinuous P_{X_T} does not necessarily possess a Lebesgue density

Assumption

- (D1) $g \in L^1(\mathbb{R})$
- (D2) $M_{X_T}(R)$ exists

Theorem

Assume (D1)-(D2) then

$$\mathbb{V}_f(X;s) = \lim_{A \to \infty} \frac{e^{-Rs}}{2\pi} \int_{-A}^{A} e^{-ius} \varphi_{X_T}(u - iR) \widehat{f}(iR - u) \, \mathrm{d}u \qquad (12)$$

if $\mathbb{V}_t(X;\cdot)$ is of bounded variation in a neighborhood of s and $\mathbb{V}_t(X;\cdot)$ is continuous at s.

The model

Valuation

Payoff functions and processes

Valuation continued

Exotic options

nterest rate lerivatives

Options on multiple assets

Basket options

Options on the minimum: $(S_T^1 \wedge \cdots \wedge S_T^d - K)^+$

Multiple functionals of one asset

Barrier options: $(S_T - K)^+ \mathbb{1}_{\{\overline{S}_T > B\}}$

Slide-in or corridor options: $(S_T - K)^+ \sum_{i=1}^N \mathbb{1}_{\{L < S_{T_i} < H\}}$

$$\begin{array}{ll} \text{Modelling:} & S_t^i = S_0^i \exp(H_t^i) \quad (1 \leq i \leq d) \\ & X_T = \Psi(H_t \mid 0 \leq t \leq T) \\ & f: \mathbb{R}^d \longrightarrow \mathbb{R}_+ \\ & g(x) = e^{-\langle R, x \rangle} f(x) \quad (x \in \mathbb{R}^d) \end{array}$$

Assumptions: (A1)
$$g \in L^1(\mathbb{R}^d)$$

(A2) $M_{X_T}(R)$ exists

(A3)
$$\widehat{\varrho} \in L^1(\mathbb{R}^d)$$
 where $\varrho(dx) = e^{\langle R, x \rangle} P_{X_T}(dx)$

The model

Valuation

Payoff functions and processes

Valuation continued

Exotic options

nterest rate derivatives

Options on multiple assets (cont.)

Theorem

If the asset price processes are modeled as exponential semimartingale processes such that $S^i \in \mathcal{M}_{loc}(P)$ (1 $\leq i \leq d$) and conditions (A1)–(A3) are in force, then

$$\mathbb{V}_f(X;s) = \frac{e^{-\langle R,s\rangle}}{(2\pi)^d} \int_{\mathbb{R}^d} e^{-i\langle u,s\rangle} M_{X_T}(R+iu) \, \widehat{f}(iR-u) du$$

he model

Valuation

Payoff functions and processes

Valuation continued

Exolic options

derivatives

References

Remark

When the payoff function is discontinuous and the driving process does not possess a Lebesgue density $\longrightarrow L^2$ -limit result

Sensitivities - Greeks

$$\mathbb{V}_f(X;S_0)=rac{1}{2\pi}\int_{\mathbb{R}}S_0^{R-\mathrm{i}u}M_{X_T}(R-\mathrm{i}u)\widehat{f}(u+\mathrm{i}R)du$$

Delta of an option

$$\Delta_f(X;S_0) = \frac{\partial \mathbb{V}(X;S_0)}{\partial S_0} = \frac{1}{2\pi} \int_{\mathbb{R}} S_0^{R-1-iu} M_{X_T}(R-iu) \frac{\widehat{f}(u+iR)}{(R-iu)^{-1}} du$$

Gamma of an option

$$\Gamma_f(X; S_0) = \frac{\partial^2 \mathbb{V}_f(X; S_0)}{\partial^2 S_0} = \frac{1}{2\pi} \int_{\mathbb{R}} S_0^{R-2-iu} \frac{M_{X_T}(R-iu)\widehat{f}(u+iR)}{(R-1-iu)^{-1}(R-iu)^{-1}} du$$

The model

Valuation

Payoff functions and processes

Valuation continued

Exotic options

Interest rate derivatives

Numerical examples

Option prices in the 2d Black-Scholes model with negative correlation.

Option prices in the 2d stochastic volatility model.

Option prices in the 2d GH model with positive (left) and negative (right) correlation.

The model

Valuation

Payoff functions and processes

Valuation continued

Exotic options

nterest rate derivatives

Lévy processes

Let $L=(L_t)_{0\leq t\leq T}$ be a *Lévy process* with triplet of local characteristics (b,c,λ) , i.e. $B_t(\omega)=bt$, $C_t(\omega)=ct$, $\nu(\omega;dt,dx)=dt\lambda(dx)$, λ Lévy measure.

Assumption (EM)

There exists a constant M > 1 such that

$$\int_{\{|x|>1\}} e^{ux} \lambda(dx) < \infty, \qquad \forall u \in [-M, M].$$

Using $(\mathbb{E}\mathbb{M})$ and Theorems 25.3 and 25.17 in Sato (1999), we get that

$$E[e^{uL_t}] < \infty, \quad E[e^{u\overline{L}_t}] < \infty \quad \text{and} \quad E[e^{u\underline{L}_t}] < \infty$$

for all $u \in [-M, M]$.

The model

Valuation

Payoff functions and processes

Exotic options

Exotio options

derivatives

On the characteristic function of the supremum I

Proposition

Let $L=(L_t)_{0\leq t\leq T}$ be a Lévy process that satisfies assumption ($\mathbb{E}\mathbb{M}$). Then, the characteristic function $\varphi_{\overline{L}_t}$ of \overline{L}_t has an analytic extension to the half plane $\{z\in\mathbb{C}: -M<\Im z<\infty\}$ and can be represented as a Fourier integral in the complex domain

$$\varphi_{\overline{L}_t}(z) = E\left[e^{iz\overline{L}_t}\right] = \int_{\mathbb{D}} e^{izx} P_{\overline{L}_t}(dx).$$

The mode

Valuation

Payoff functions and processes

Exotic options

Interest rate

Fluctuation theory for Lévy processes

Theorem (Extension of Wiener–Hopf to the complex plane)

Let L be a Lévy process. The Laplace transform of \overline{L} at an independent and exponentially distributed time θ , $\theta \sim \text{Exp}(q)$, can be identified from the *Wiener–Hopf factorization* of L via

$$E\left[e^{-\beta \overline{L}_{\theta}}\right] = \int_{0}^{\infty} q E\left[e^{-\beta \overline{L}_{t}}\right] e^{-qt} dt = \frac{\kappa(q,0)}{\kappa(q,\beta)}$$
(13)

for $q>\alpha^*(\textit{M})$ and $\beta\in\{\beta\in\mathbb{C}|\mathcal{R}(\beta)>-\textit{M}\}$ where $\kappa(q,\beta)$, is given by

$$\kappa(q,\beta) = k \exp\left(\int_0^\infty \int_0^\infty (e^{-t} - e^{-qt - \beta x}) \frac{1}{t} P_{L_t}(\mathrm{d}x) \, \mathrm{d}t\right). \tag{14}$$

The model

Valuation

Payoff functions and processes

Exotic options

Interest rate

On the characteristic function of the supremum II

Theorem

Let $L=(L_t)_{0\leq t\leq T}$ be a Lévy process satisfying assumption ($\mathbb{E}\mathbb{M}$). The Laplace transform of \overline{L}_t at a fixed time $t,\,t\in[0,\,T]$, is given by

$$E\left[e^{-\beta \overline{L}_{t}}\right] = \lim_{A \to \infty} \frac{1}{2\pi} \int_{-A}^{A} \frac{e^{t(Y+iv)}}{Y+iv} \frac{\kappa(Y+iv,0)}{\kappa(Y+iv,\beta)} dv, \tag{15}$$

for $Y > \alpha^*(M)$ and $\beta \in \mathbb{C}$ with $\Re \beta \in (-M, \infty)$.

Remark

Note that $\beta = -iz$ provides the characteristic function.

The model

Valuation

Payoff functions and processes

continued

Exotic options

Interest rate derivatives

Application to lookback options

Fixed strike lookback call: $(\overline{S}_T - K)^+$ (analogous for lookback put). Combining the results, we get

$$\mathbb{C}_{T}(\overline{S};K) = \frac{1}{2\pi} \int_{\mathbb{R}} S_{0}^{R-iu} \varphi_{\overline{L}_{T}}(-u-iR) \frac{K^{1+iu-R}}{(iu-R)(1+iu-R)} du \quad (16)$$

where

$$\varphi_{\overline{L}_{T}}(-u-iR) = \lim_{A \to \infty} \frac{1}{2\pi} \int_{-A}^{A} \frac{e^{T(Y+iv)}}{Y+iv} \frac{\kappa(Y+iv,0)}{\kappa(Y+iv,iu-R)} dv$$
 (17)

for $R \in (1, M)$ and $Y > \alpha^*(M)$.

• The floating strike lookback option, $(\overline{S}_T - S_T)^+$, is treated by a *duality* formula (Eb., Papapantoleon (2005)).

The mode

Valuation

Payoff functions and processes

Exotic options

Interest rate

One-touch options

One-touch call option: $\mathbb{1}_{\{\overline{S}_T > B\}}$.

Driving Lévy process L is assumed to have infinite variation or has infinite activity and is regular upwards. L satisfies assumption (\mathbb{EM}), then

$$\mathbb{DC}_{T}(\overline{S}; B) = \lim_{A \to \infty} \frac{1}{2\pi} \int_{-A}^{A} S_{0}^{R+iu} \varphi_{\overline{L}_{T}}(u - iR) \frac{B^{-R-iu}}{R+iu} du \qquad (18)$$
$$= P(\overline{L}_{T} > \log(B/S_{0}))$$

for $R \in (0, M)$.

The mode

Valuation

Payoff functions and processes

Exotic options

Interest rate derivatives

Equity default swap (EDS)

- Fixed premium exchanged for payment at "default"
- default: drop of stock price by 30 % or 50 % of $S_0 \rightarrow$ first passage time
- fixed leg pays premium K at times T_1, \ldots, T_N , if $T_i \leq \tau_B$
- if $\tau_B \leq T$: protection payment C, paid at time τ_B
- premium of the EDS chosen such that initial value equals 0; hence

$$\mathcal{K} = \frac{CE\left[e^{-r\tau_B}\mathbb{1}_{\{\tau_B \le T\}}\right]}{\sum_{i=1}^{N} E\left[e^{-rT_i}\mathbb{1}_{\{\tau_B > T_i\}}\right]}.$$
 (19)

• Calculations similar to touch options, since $\mathbb{1}_{\{\tau_B \leq T\}} = \mathbb{1}_{\{\underline{S}_T \leq B\}}$.

The mode

Valuation

Payoff functions and processes

Exotic options

Interest rate

Basic interest rates

B(t,T): price at time $t \in [0,T]$ of a default-free zero coupon bond with maturity $T \in [0,T^*]$ (B(T,T)=1)

f(t,T): instantaneous forward rate

$$B(t,T) = \exp\left(-\int_t^T f(t,u) du\right)$$

L(t,T): default-free forward Libor rate for the interval T to $T+\delta$ as of time t < T (δ -forward Libor rate)

$$L(t,T) := \frac{1}{\delta} \left(\frac{B(t,T)}{B(t,T+\delta)} - 1 \right)$$

 $F_B(t,T,U)$: forward price process for the two maturities T < U

$$F_B(t,T,U) := \frac{B(t,T)}{B(t,U)}$$

$$\implies 1 + \delta L(t,T) = \frac{B(t,T)}{B(t,T+\delta)} = F_B(t,T,T+\delta)$$

The model

Valuation

Payoff functions and processes

continued

Interest rate derivatives

Dynamics of the forward rates

(Eb-Raible (1999), Eb-Özkan (2003), Eb-Jacod-Raible (2005), Eb-Kluge (2006)

$$df(t,T) = \alpha(t,T) dt - \sigma(t,T) dL_t \qquad (0 \le t \le T \le T^*)$$

 $\alpha(t,T)$ and $\sigma(t,T)$ satisfy measurability and boundedness conditions and $\alpha(s,T)=\sigma(s,T)=0$ for s>T

Define
$$A(s,T) = \int_{s \wedge T}^{T} \alpha(s,u) \, \mathrm{d}u$$
 and $\Sigma(s,T) = \int_{s \wedge T}^{T} \sigma(s,u) \, \mathrm{d}u$

Assume
$$0 \le \Sigma^{i}(s, T) \le M$$
 $(1 \le i \le d)$

For most purposes we can consider deterministic α and σ

The mode

Valuation

Payoff functions and processes

continued

Interest rate derivatives

Implications

Savings account and default-free zero coupon bond prices are given by

$$B_t = rac{1}{B(0,t)} \exp \left(\int_0^t A(s,T) \, \mathrm{d}s - \int_0^t \Sigma(s,t) \, \mathrm{d}L_s
ight)$$
 and

$$B(t,T) = B(0,T)B_t \exp\bigg(-\int_0^t A(s,T)\,\mathrm{d}s + \int_0^t \Sigma(s,T)\,\mathrm{d}L_s\bigg).$$

If we choose $A(s, T) = \theta_s(\Sigma(s, T))$, then bond prices, discounted by the savings account, are martingales.

In case d = 1, the martingale measure is unique (see Eberlein, Jacod, and Raible (2004)).

he model

Valuation

Payoff functions and processes

continued

Interest rate derivatives

Key tool

 $L = (L^1, \dots, L^d)$ d-dimensional time-inhomogeneous Lévy process

$$\mathbb{E}[\exp(i\langle u, L_t \rangle)] = \exp \int_0^t heta_s(iu) \, \mathrm{d}s \qquad ext{where}$$
 $heta_s(z) = \langle z, b_s
angle + rac{1}{2} \langle z, c_s z
angle + \int_{\mathbb{R}^d} \left(e^{\langle z, x
angle} - 1 - \langle z, x
angle
ight) F_s(\mathrm{d}x)$

in case L is a (time-homogeneous) Lévy process, $\theta_s = \theta$ is the cumulant (log-moment generating function) of L_1 .

Proposition Eberlein, Raible (1999)

Suppose $f: \mathbb{R}_+ \to \mathbb{C}^d$ is a continuous function such that $|\mathcal{R}(f^i(x))| \leq M$ for all $i \in \{1, \dots, d\}$ and $x \in \mathbb{R}_+$, then

$$\mathbb{E}\left[\exp\left(\int_0^t f(s)dL_s\right)\right] = \exp\left(\int_0^t \theta_s(f(s))ds\right)$$

Take
$$f(s) = \sum (s, T)$$
 for some $T \in [0, T^*]$

The model

Valuation

Payoff functions and processes

continued

Interest rate derivatives

Pricing of European options

$$B(t,T) = B(0,T) \exp \left[\int_0^t (r(s) + \theta_s(\Sigma(s,T))) \, \mathrm{d}s + \int_0^t \Sigma(s,T) \mathrm{d}L_s \right]$$

where r(t) = f(t, t) short rate

V(0, t, T, w) time-0-price of a European option with maturity t and payoff w(B(t, T), K)

$$V(0, t, T, w) = \mathbb{E}_{\mathbb{P}^*}[B_t^{-1}w(B(t, T), K)]$$

Volatility structures

$$\Sigma(t,T) = \frac{\widehat{\sigma}}{a} (1 - \exp(-a(T-t)))$$
 (Vasiček)

$$\Sigma(t,T) = \widehat{\sigma}(T-t)$$
 (Ho–Lee)

Fast algorithms for Caps, Floors, Swaptions, Digitals, Range options

The model

Valuation

Payoff functions and processes

continued

Interest rate

Pricing formula for caps

(Eberlein, Kluge (2006))

$$w(B(t, T), K) = (B(t, T) - K)^{+}$$

Call with strike K and maturity t on a bond that matures at T

$$C(0, t, T, K) = \mathbb{E}_{\mathbb{P}^*}[B_t^{-1}(B(t, T) - K)^+]$$

= $B(0, t)\mathbb{E}_{\mathbb{P}_t}[(B(t, T) - K)^+]$

Assume $X = \int_0^t (\Sigma(s,T) - \Sigma(s,t)) dL_s$ has a Lebesgue density, then

$$C(0, t, T, K) = \frac{1}{2\pi} KB(0, t) \exp(R\xi)$$

$$\times \int_{-\infty}^{\infty} e^{iu\xi} (R + iu)^{-1} (R + 1 + iu)^{-1} M_t^X (-R - iu) du$$

where ξ is a constant and R < -1.

Analogous for the corresponding put and for swaptions

The mode

Valuation

Payoff functions and processes

continued

Interest rate derivatives

References

 Borovkov, K. and A. Novikov (2002). On a new approach to calculating expectations for option pricing. *J. Appl. Probab.* 39, 889–895.

- Carr, P. and D. B. Madan (1999). Option valuation using the fast Fourier transform. J. Comput. Finance 2 (4), 61–73.
- Eberlein, E., K. Glau, and A. Papapantoleon (2009).
 Analysis of Fourier transform valuation formulas and applications. To appear in *Applied Mathematical Finance*.
- Eberlein, E., K. Glau, and A. Papapantoleon (2009).
 Analyticity of the Wiener–Hopf Factors and valuation of exotic options in Lévy models. Preprint, University of Freiburg.
- Eberlein, E. and A. Papapantoleon (2005). Symmetries and pricing of exotic options in Lévy models. In *Exotic Option Pricing and Advanced Lévy Models*, A. Kyprianou, W. Schoutens, P. Wilmott (Eds.), Wiley, pp. 99–128.

The model

Valuation

Payoff functions and processes

continued

Exotic options

nterest rate lerivatives

References (cont.)

Eberlein, E., A. Papapantoleon, and A. N. Shiryaev (2008).
 On the duality principle in option pricing: Semimartingale setting. *Finance & Stochastics* 12, 265–292.

- Hubalek, F., J. Kallsen and L. Krawczyk (2006).
 Variance-optimal hedging for processes with stationary independent increments. Ann. Appl. Probab. 16, 853–885.
- Kyprianou, A. E. (2006). Introductory Lectures on Fluctuations of Lévy Processes with Applications. Springer.
- Papapantoleon, A. (2007). Applications of semimartingales and Lévy processes in finance: Duality and valuation. Ph.D. thesis, University of Freiburg.
- Raible, S. (2000). Lévy processes in finance: theory, numerics, and empirical facts. Ph.D. thesis, University of Freiburg.

The model

Valuation

Payoff functions and processes

Continued

Exotic options

erivatives