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The Problem

Market assumptions

We will assume that:
@ The market is complete with a unique martingale measure
¢Pon (Q,.%)
@ The risk is measured in terms of a law-invariant convex risk
measure p continuous from above.

p(X):= sup (Eq[—X]—vmin(Q))
Qe #41(P)

we will suppose p(0) =0
@ The risk exposure imposed on the Fund manager is given
by po
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The Problem

Setting

If we let
H = {XE L' (P) [E[¢X] < %0,0 < p(— (X —2)7) < po}
then the FM’s aim is to find, if it exists, a X* € H such that:

E[u(X*—2)"] = supE [u(X - 2)"]
XeH

and the optimal payoff for the Investor will be

max (X", z)
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Decoupling

Decoupling A R-valued Maximization Problem

Decoupling-ldea

Define U (X) :=E [u ((X — 2)™)] and remark that
U(X) =U(X1,)

where A := {X > z}. This means that only X1, remains
important for the investor. This remark suggests this
decoupling:

Carmine De Franco - Peter Tankov Portfolio insurance under risk-measure constraint



Decoupling

Decoupling A R-valued Maximization Problem

Decoupling-ldea

let (A,x") e Z xRt and
sup U (X) s.t.
P14 RlEX]<xt, XeL'(P)and
X=0 onA° X>z onA
and

infE [£Y] s.t.
A(A) S p(=(Y=2) 14) <po, YeL(P)
Y=0 onA, Y <z onA°

Define also x; (A) := xg — A (A). Remark upon how both these
problems can be solved by Lagrangian methods.
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Decoupling

Decoupling A R-valued Maximization Problem

Decoupling-ldea

The next example will clarify the role of A (A). Fix A such that
0 <P(A) < 1 and suppose A (A) = —oo. It is possible to find ,
VneNa Y" e % (A)such that E[Y"] < —n. Consider now
this payoff

n_ Xo+ N

E [£14]

We deduce X" € H and U (X") — +oo, which means that our
problem has no finite solution.
We will then carry out the following:

14+ yn

ianeg A (A) > —00
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Decoupling
A R-valued Maximization Problem

Decoupling

Decoupling-ldea

The following condition guarantees our assumption:

Theorem

Let p be a law-invariant convex risk measure and £ the
risk-neutral probability of the market.
If

Ymin (§IP’) < 400

theninfg A (A) > —oc.

Carmine De Franco - Peter Tankov Portfolio insurance under risk-measure constraint



Decoupling
A R-valued Maximization Problem

Decoupling

Decoupling

Let X (A, x*) the solution of problem £; with parameters A and
x* and recall that x* (A) := xo — A (A)

Theorem
Ifinfg A (A) > —oc then

sup U (X) = sup U (X (A, xT (A)))
XeH AcF

Ifinfg A (A) = —oo then we already know

sup U (X) = 40
XeH
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Decoupling

Decoupling A R-valued Maximization Problem

Algorithm 1

Using the last Theorem, we can solve our problem as the
following:

Q fixAc .7
@ solve #; (A) and find A (A)
© solve Z; (A) with parameter x* (A)

© maximize the value function of 22; (A), U (X (A, xT (A))),
overAc .7
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Decoupling
A R-valued Maximization Problem

Decoupling

Decoupling

We can use the last result to give a necessary and sufficient
condition for the existence of a finite solution
Theorem

Assume infg A (A) > —oo and X* is optimal for our problem.
Define A* := {X* > z}. One has

sup U (X (A, xT (A))) = U (X (A", xT (AY)))
AcF

A (A" =E[€Y*], where Y* := X* — X* 1.
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Decoupling

Decoupling A R-valued Maximization Problem

Decoupling

Reciprocally, let A* € # and a Y* € &5 (A*) such that
U (X (A", xT (A")) =sup U (X (A xT(A)))
AcF

EgY=a(A) = i EKY]

Then a solution of our problem is given by
X* = X (A, xT (A") 1a + Y1400

In this case, the payoff for the investor will be

Payoff = X (A", x" (A*)) 1p + 2z
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Decoupling

Decoupling A R-valued Maximization Problem

A R-valued Maximization Problem

@ Generally a maximization over the sets in .%# is not simple

@ Our aim here is to show that this latter maximization may
be carried out over a subset of F, parameterized by a real
number, Jin and Zhou (2008).

define
v (A) = sup U (X)
Xe 21 (Ax+(A))

so then

sup U (X) = sup U (X (A x* (A))) = sup v (A)
XeH AT AcF
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Decoupling

Decoupling A R-valued Maximization Problem

A R-valued Maximization Problem

Theorem

Suppose ¢ has not atoms. Define { := essinf { and

¢ :=esssupé. LetAe . and ¢ € [¢, €] such that
P (£ < c¢)=P(A). Then

v(A)sv({E<c})
which means

sup U (X) = sup v (A) = sup v({{ <c})
XeH AcF celeq]
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Decoupling

Decoupling A R-valued Maximization Problem

Algorithm 2

Using the last Theorem we can solve our problem as the
following:

Q fixce [¢,¢]

© solve #; (c) and find A (c)

© solve Z; (c) with parameter x; (¢) = xo — A ()
Q find ¢* that maximizes U (X; ({¢ < ¢}, x4 (€)))

© A optimal payoff for the Investor will be
X =X ({§<c}, x5 (0)Ve<p + 2
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Example-CVaR
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Example-CVaR

We will now see what happens when p = CVaR,, A € (0,1):

A
CVaR, (X) = % / VAR, (X) du
0
or, equivalently
+oo
CVaR, (X) = YA (P(=X > 1)) dt
0
where ) (U) = (ug\\)\)
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Example-CVaR
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Example-CVaR

We then have the following:

Let ¢ the state price density.

i) If¢ is unbounded then our problem has no finite
solution

ii) If¢ is bounded then our value function is:

sup U(X) = sup E[u([I(A(c)O]) Te<qy]
XeH cele. g
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Example-CVaR
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Example-CVaR

where
o /=(u)"
® A(c) is given by: E[¢ (I (A () 1Y) Tie<ey] = Xo + poBE

We do not have a solution for the Fund Manager problem
because problem 42, does not have a minimum. However we
can give a solution for the investor which is

X =z+[I(A ()OI
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Example-CVaR
Example-Entropic Risk Measure (ERM)
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Example-CVaR

Note also that the minimal penalty function for the CVaR, is
given by:

0 %<l Pas
+o00 otherwise

Ymin (Q) = {

So, for example, if we have ¢ bounded but P (¢ > 1) > 0 then it
turns out vpmin (€P) = 400 even if the problem has a solution!
Here is a good example where we have a solution even if

Ymin (5[?’) = +oo !
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Example-Entropic Risk Measure

If we consider p = ERM,, where A > 0 and
ERM, (X) := AInE [exp <—;\X>]

We have:
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Example-Entropic Risk Measure

Theorem

Assume that the state price density ¢ has no atoms and
satisfies ¢ log ¢ € ' (P). Then the optimal payoff for the fund
manager is given by

X i= 2+ [N Tieeor) — 5 0g (n(f:)f)r 1ies0
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Example-Entropic Risk Measure

= (
@ \(c)isgivenby:E [£[I(A(C) Q)] Tie<ey] =X — A(c)
@ a(c)=P(E>r0)
°

)=
Y (c) :=E [ET1iesqy]

5001 = 5 (o () (0v51) . (ov51)

n(c) is given by:
P
C)w(cvn()>+P<C<€<”(C>:eﬁo+a(0)—1

e c* attains the supremum of ¢ — E [u ([I(A(¢) )] T) Tie<qy]
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Example-Entropic Risk Measure

Again, the proof is not complicated; one just needs to follow the

Algorithm 2.
Remark that the penalty function for the ERM,:
d
min (Q) 1= AH (Q[P) := AEq {'09 (ﬁ)]

With our hypothesis, we easily have vy, (EP) < co: we know
that this is a sufficient condition under which the problem has a
solution. The condition ¢ log ¢ € L' (P) is naturally verified in a
Black-Scholes framework.
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Numerical Results

We will see now what happens in a very simple
one-dimensional Black-Scholes model:
On (Q, 7, %:,P), let

dS; = S; (bdt + cdW;) Sp = 1

and suppose p = b/o > 0. The unique equivalent martingale
measure is given by Q = £P, where

¢ = exp(—puWr — 12T/2) = [Srexp (T (02 — b) /2) /So] 2.
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Numerical Results

We will use the utility function u (x) = 1 — e~%% and the ERM,,
as risk measure. Our initial data is:

Data

drift 15%

volatility 40%
risk premium 1.5

maturity 1 year

initial capital 10
guarantee 85
risk tolerance 1.5
entropic constant (\) | 0.5
utility constant (9) 0.6
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Numerical Results

An optimal payoff will be:

L +
X" = |:(,)_ |Og (ST) + K1:| 1{57_23*}—6 [K2 — Llog (ST)]+ 1{ST<S*}+Z
where

s*=0.9375, K;=1.34026, K, = 3.18886

Other quantities one can also compute are optimal c*, value
functions of problems &7{- %%, and the "success" probability:

¢t = 272293, v(c*)=0.900134
A(c*) = —1.17387, P(Sr > s*) = 0.946722
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The following figure is the value function ¢ — v (c):

i —— The value function v(c
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Graphics

The Payoff profile for the Fund Manager

+[==__The payoff profile for the fund manager

payoff_fund(S)
°
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Graphics

Suppose, for sake of simplicity, z = 0 and let us see what
happens if we do not allow any risk, i.e. pg = 0. We can see
this by solving the following problem

maxE[1 — e %X"]

E[X] <X, X>0

and compare the payoff profiles
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Payoff profile in case of risk constraint vs Payoff profile with the condition X>0

[ The payoff profile in case of risk constraint
_|L==_The payoff profile under the condition x>0
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