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Motivation

• There are at least two examples in portfolio management that are

time inconsistent:

– Maximizing utility of intertemporal consumption and final wealth

assuming a non-exponential discount rate.

– Mean-variance utility.

• It means that the agents may have an incentive to deviate from

their decisions that were optimal in the past.

• It is not often the case that management decisions are irreversible;

there will usually be many opportunities to reverse a decision which,

as times goes by, seems ill-advised.
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Maximizing utility of intertemporal consumption and
final wealth

• We work in a Black and Scholes world, with riskless rate r :

dS(t) = S(t) [αdt+ σ dW (t)] , 0 ≤ t ≤ ∞,

• Consider a self-financing portfolio. The total value is X, the amount

invested in the stock is ζ and the consumption rate is c, then with

µ = α− r :

dXζ,c(t) = Xζ,c(t)[(r + µζ(t)− c(t)) dt+ σζ(t) dW (t)].

• The investor at time t ∈ [0, T ] uses the criterion:

J(t, x, ζ, c) , E

[∫ T

t

h(s− t)U(c(s)Xζ,c(s)) ds+ a(T − t)U(Xζ,c(T ))
∣∣∣∣Xζ,c(t) = x

]
.
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The investor’s characteristics

J(t, x, ζ, c) , E

[∫ T

t

h(s− t)U(c(s)Xζ,c(s)) ds+ a(T − t)U(Xζ,c(T ))
∣∣∣∣Xζ,c(t) = x

]
.

• T is a stopping time (death of the investor). In the sequel, we will

take it as deterministic.

• U(·) is the utility function. In the sequel we will use Up(x) = xp

p

with p < 1.

• h(·) is the psychological discount rate. We assume that

0 ≤ h(t) ≤ h(0) = 1, and h(∞) = 0.

• a(·) is the bequest coefficient.
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Examples

J(t, x, ζ, c) , E

[∫ T

t

h(s− t)U(c(s)Xζ,c(s)) ds+ a(T − t)U(Xζ,c(T ))
∣∣∣∣Xζ,c(t) = x

]
.

• h(t) = a(t) = exp (−ρt). This is the classical (Merton) problem.

• h(t) = exp (−ρt) and a(t) 6= h(t).

• h(t) = (1 + at)−
b
a (hyperbolic discounting), a(t) = nh(t).

The last two cases have strong empirical support, but they do not fall

within the classical framework. Indeed, they give rise to time

inconsistency on the part of the investor, so that there is no

implementable optimal portfolio.
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Time-inconsitency for dummies

Consider an individual who wants to stop smoking:

• If he stops today, he will suffer -1 today (withdrawal), but gain +2

tomorrow (health).

• He has a non-constant discount rate: a stream ut is valued today

(t = 0) at

u0 +
1
2

∞∑
t=1

ρtut for some ρ ∈ (
1
2
, 1)

• Stopping today yields a utility of −1 + ρ < 0.

• Stopping tomorrow yields a utility of (−1+2ρ)
2 > 0.

• So he decides today to stop tomorrow. Unfortunately, when

tomorrow comes, it becomes today, and he decides again to stop the

next day.
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Time-inconsistency for mathematicians

• In the exponential case, utilities discounted at time 0 and t > 0 are

proportional

E

[∫ T

t

e−ρ(s−t)U(c(s)Xζ,c(s)) ds+ e−ρ(T−t)U(Xζ,c(T ))

]
=

eρtE

[∫ T

t

e−ρsU(c(s)Xζ,c(s)) ds+ e−ρTU(Xζ,c(T ))

]
• In the non-exponential case, this is no longer the case. The HJB

equation written for the investor at time t is
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∂V

∂s
(t, s, x)+sup

ζ,c

[
(r + µζ − c)x∂V

∂x
(t, s, x) +

1
2
σ2ζ2x2 ∂

2V

∂x2
(t, s, x)

]

+
h′(s− t)
h(s− t)

V (t, s, x) + U(xc) = 0, V (t, T, x) = a(T − t)U(x)

which obviously depends on t (so every t−day the investor changes

his criterion of optimality).
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Markov Strategies

• A Markov strategy is a pair (F (t, x), G(t, x)) of smooth functions.

• Investment and consumption rates are given by:

ζ(t) =
F (t,X(t))
X(t)

, c(t) =
G(t,X(t))
X(t)

,

and the wealth then is a solution of the stochastic differential

equation (SDE):

dX(s) = [rX(s)+µF (s,X(s))−G(s,X(s))]ds+σF (s,X(s))dW (s).

• Substituting into the criterion, we get:

J(t, x, F,G) , E

[∫ T

t

h(s− t)U(c(s)Xζ,c(s)) ds+ a(T − t)U(Xζ,c(T ))
∣∣∣∣Xζ,c(t) = x

]
,
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Equilibrium Strategies

• We say that (F,G) is an equilibrium strategy if at any time t, the

investor finds that he has no incentive to change it during the

infinitesimal period [t, t+ ε].

• Definition: (F,G) is an equilibrium strategy if at any time t, for

every ζ and c :

lim
ε↓0

J(t, x, F,G)− J(t, x, ζε, cε)
ε

≥ 0,

where the process {ζε(s), cε(s)}s∈[0,T ] is defined by:
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[ζε(s), cε(s)] =


[F (s,X(s)), G(s,X(s))] 0 ≤ s ≤ t
[ζ(s), c(s)] t ≤ s ≤ t+ ε

[F (s,X(s)), G(s,X(s))] t+ ε ≤ s ≤ T

and the equilibrium wealth process is given by the SDE:

dX(s) = [rX(s)+µF (s,X(s))−G(s,X(s))]ds+σF (s,X(s))dW (s).
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The integral equation

• An equilibrium strategy is given by

F (t, x) = −
µ ∂v∂x (t, x)

σ2 ∂2v
∂x2 (t, x)

, G(t, x) = I

(
∂v

∂x
(t, x)

)
, I = (U ′)−1.

where v satisfies the integral equation:

v(t, x) = E

[∫ T

t

h(s− t)U(G(s,X(s))) ds+ a(T − t)U(X(T ))
∣∣∣∣X(t) = x

]
,

where {X(s)}s∈[0,T ] is given by the SDE

dX(s) = [rX(s)+µF (s,X(s))−G(s,X(s))]ds+σF (s,X(s))dW (s).
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• In a differential form the integral equation has a non-local term.

!
∂v

∂t
(t, x)+

(
rx− I

(
∂v

∂x
(t, x)

))
∂v

∂x
(t, x)− µ2

2σ2

[ ∂v∂x (t, x)]2
∂2v
∂x2 (t, x)

+U
(
I

(
∂v

∂x
(t, x)

))
=

−E

[∫ T

t

h′(s− t)U
(
I

(
∂v

∂x
(s,Xt,x(s))

))
ds+ a′(T − t)U(Xt,x(T ))

]
.

• For the special case of exponential discounting it coincides with the

HJB equation since

E

[∫ T

t

h′(s− t)U
(
I

(
∂v

∂x
(s,Xt,x(s))

))
ds+ a′(T − t)U(Xt,x(T ))

]
= −ρv(t, x).
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Ansatz

• Assume U(x) = Up(x) = xp

p . Let us look for the value function v of

the form v(t, x) = λ(t)xp, so that:

F (t, x) =
µx

σ2(1− p)
, G(t, x) = [λ(t)]

1
p−1x.

• This linearizes the equilibrium wealth dynamics:

dX(t)
X(t)

=
[
r +

(α− r)2

σ2

1
1− p

− [λ(t)]
1

p−1

]
dt+

(α− r)
σ

1
1− p

dW (t)

• The integral equation becomes
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
λ(t) =

∫ T
t
h(s− t)eK(s−t)[λ(s)]

p
p−1 e

−
„R s

t
p[λ(u)]

1
p−1 du

«
ds+

+a(T − t)eK(T−t)e
−
„R T

t
p[λ(u)]

1
p−1 du

«

λ(T ) = 1,

where

K = p

(
r +

µ2

2(1− p)σ2

)
.

• This equation has a unique smooth solution.
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Logarithmic utility

• Take U(x) = lnx (corresponding to p = 0) and

a(T − t) = nh(T − t). We get an explicit formula:

λ(t) =
∫ T

t

h(s− t)eK(s−t) ds+ nh(T − t)eK(T−t),

and the equilibrium policies are

F (t, x) =
µ

σ2
x, G(t, x) = [λ(t)]−1x.
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Numerical Results

• Let us consider the following discount functions:

exponential-h0(t), pseudo-exponential type I-h1(t) and

pseudo-exponential type II-h2(t)

h0(t) = a0(t) = exp(−ρt), h1(t) = a1(t) = λ exp(−ρ1t)+(1−λ) exp(−ρ2t),

h2(t) = a2(t) = (1 + λt) exp(−ρt).

• For α = 0.12, σ = 0.2, r = 0.05, the discount factors ρ1 = 0.1,
ρ2 = 0.3 and the weighting parameter λ = 0.25, CRRA p = −1 we

graph equilibrium consumption rates
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• Take CRRA p = −0.5
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• Take CRRA p = 0
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• Take CRRA p = 0.5
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Consumption Puzzle

• Standard models predict that consumption will grow smoothly over

time (or it will decrease smoothly).

• Household data indicate that consumption is hump-shaped.

• This inconsistency is known as the consumption puzzle.

• Hyperbolic discounting can explain this puzzle. Let us consider:

h(t) = (1 + at)−
b
a , a(t) = n(1 + at)−

b
a .
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• Let us graph equilibrium consumption rates
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Mean Variance Utility

• The risk criterion is:

J(t, x, ζ) = E[Xζ(T )|Xζ(t) = x]− γ

2
V ar(Xζ(T )|Xζ(t) = x).

• Time inconsistency arrises from the risk criterion non-linearity wrt

expected value of the terminal wealth.

• Bjork and Murgoci found that the equilibrium investment is

F (t, x) =
1
γ

µ

σ2
e−r(T−t).
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Thank You!

The End!
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