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The Merton Portfolio Optimization Problem

On (Ω,F , (Ft)t≥0,P), consider two liquidly traded assets:
a stock S & money market a.c. B with +ve interest rate (rt)t≥0.

With initial wealth x ∈ IR, the investor dynamically rebalances his
portfolio allocations in S and B. The discounted wealth is

Xπ
t = x+

∫ t

0

πu

Su

dSu,

where (πt)t≥0 is the amount invested in S.

The classical Merton portfolio optimization:
(i) investor’s risk preference is modeled by a deterministic utility
function Û(x) defined at a fixed terminal time T ;
(ii) with wealth Xt, the Merton value function is

Mt(Xt) = ess sup
π∈Zt,T

IE
{

Û(Xπ
T )| Ft

}

, 0 ≤ t ≤ T.

All Û , M , and optimal strategy π̂∗ depend on T .
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A Property of the Merton Value Process

Goals: (i) specify the investor’s utility u0(x) at time 0 (not T );
(ii) utility evolves stochastically and consistently over time.

Observation 1: M acts as the intermediate utility at time t ≤ T .

Observation 2: if the dynamic programming principle holds:

Mt(Xt) = ess sup
π∈Zt,s

IE {Ms(X
π
s )| Ft} , 0 ≤ t ≤ s ≤ T,

then (Mt(X
π
t ))0≤t≤T is a supermartingale for any admissible

strategy π, and it is a martingale under some strategy π̂∗.

With Markovian prices, the optimal portfolio allocation can be
found by solving the Hamilton-Jacobi-Bellman PDE (Merton (’69)
and many others).

Exponential Utility: DPP holds in semimartingale market
(Mania-Schweizer ’05); duality in terms of entropy minimization
(Fritelli ’00, Delbaen et al ’02).
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Forward Investment Performance Measurement

Definition

An Ft-adapted process (Ut(x))t≥0 is a forward performance process if:

1 U0(x) = u0(x), for x ∈ IR, where u0 : IR 7→ IR is increasing and

concave,

2 for each t ≥ 0, x 7→ Ut(x) is increasing and concave in x,

3 for 0 ≤ t ≤ s < ∞, we have

Ut(Xt) = ess sup
π∈Zt,s

IE{Us(X
π
s )| Ft}, Xt ∈ Ft. (1)

First introduced by Musiela-Zariphopoulou ’08.

(1) is called the horizon-unbiased cond’n in Henderson-Hobson ’07,
or the self-generating cond’n in Zitkovic ’09.

(Ut(X
π
t ))t≥0 is a (P,Ft) supermartingale for any strategy π, and a

martingale for some π∗ (if it exists).
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Forward Performance Indifference Valuation

An investor holds an American option with a Ft-adapted bounded
payoff process (gt)0≤t≤T .

The holder’s value process at time t ∈ [0, T ] with wealth Xt is

Vt(Xt) = ess sup
τ∈Tt,T

ess sup
π∈Zt,τ

IE {Uτ (X
π
τ + gτ ) | Ft} .

The holder’s forward indifference price process (pt)0≤t≤T for the
American option is defined by the equation

Vt(Xt) = Ut(Xt + pt), t ∈ [0, T ].

Compare with the classical case:

ess sup
τ∈Tt,T

ess sup
π∈Zt,τ

IE {Mτ (X
π
τ + gτ ) | Ft} ,

which corresponds to specifying that option proceeds received at
exercise time τ are re-invested in the Merton portfolio up till time T .

In contrast, the forward performance process U specifies utilities at
all times, without reference to any specific horizon.
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Construction of a Forward Performance

Let’s model the discounted stock price as a continuous Itô process:

dSt = Stσt (λt dt+ dWt) .

Theorem

Define the stochastic process At =
∫ t

0
λ2
s ds, t ≥ 0. Let the function

u : IR × IR+ 7→ IR be C3,1, strictly concave and increasing in the spatial

argument. Also, assume that it satisfies

ut =
1

2

u2
x

uxx

,

with initial condition u(x, 0) = u0(x) , where u0 ∈ C3(IR). Then,

Ut(x) = u (x,At) , t ≥ 0,

defines a forward performance process. Moreover, the optimal π∗ is

π∗
t = −

λt

σt

ux(X
π∗

t , At)

uxx(Xπ∗

t , At)
.
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Example: American Options with Stochastic Volatility

The disc. stock price follows

dSt = µ(Yt)St dt+ σ(Yt)St dWt.

The drift and volatility coefficients µ(Yt) and σ(Yt) are driven by a
non-traded stochastic factor Y which evolves according to

dYt = b(Yt) dt+ c(Yt) (ρdWt +
√

1− ρ2dŴt),

with correlation coefficient ρ ∈ (−1, 1).

Consider the exponential risk preference function u(x, t):

u(x, t) = −e−γx+ t
2 ,

with local risk aversion γ > 0.

The exponential forward performance process is given by:

Ue
t (x) = −e−γx+1

2

∫
t

0
λ(Ys)

2ds,

where λ(y) = µ(y)/σ(y).
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The Holder’s Forward Indifference Price

The American option has a bounded and smooth payoff function
g(s, y, t).

Non-tradability of Y renders the market incomplete.

The holder’s maximal expected forward performance is

V e
t (Xt) = ess sup

τ∈Tt,T

ess sup
π∈Zt,τ

IE
{

−e−γ(Xπ
τ +g(Sτ ,Yτ ,τ))e

1

2

∫
τ

0
λ(Ys)

2ds | Ft

}

= e
1

2

∫
t

0
λ(Ys)

2ds V (Xt, St, Yt, t),

where

V (x, s, y, t)

= sup
τ∈Tt,T

π∈Zt,τ

IE
{

−e−γ(Xπ
τ +g(Sτ ,Yτ ,τ))e

1

2

∫
τ

t
λ(Ys)

2ds |Xt = x, St = s, Yt = y
}

.
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The HJB Variational Inequality

We write down the associated HJB variational inequality for V :































Vt + LSY V +H(Vxx, Vxy, Vxs, Vx) +
λ(y)2

2
V ≤ 0,

V (x, s, y, t) ≥ −e−γ(x+g(s,y,t)),
(

Vt + LSY V +H(Vxx, Vxy, Vxs, Vx) +
λ(y)2

2
V
)

·
(

− e−γ(x+g) − V
)

= 0,

V (x, s, y, T ) = −e−γ(x+g(s,y,T )),

for (x, s, y, t) ∈IR×IR+×IR×[0, T ], where

LSY v =
1

2
σ(y)2s2vss+ρc(y)σ(y)svsy+

1

2
c(y)2vyy+λ(y)σ(y)svs+b(y)vy

is the infinitesimal generator of (St, Yt)t≥0 under P, and

H(vxx, vxy, vxs, vx)

= max
π

(

π2σ(y)2

2
vxx + π

(

ρσ(y)c(y)vxy + σ(y)2svxs + λ(y)σ(y)vx
)

)

.
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The Forward Indifference Price

Then, the transformation V (x, s, y, t) = −e−γ(x+p(s,y,t)) yields






























pt + L0
SY p−

1

2
γ(1− ρ2)c(y)2p2y ≤ 0,

p(s, y, t) ≥ g(s, y, t),
(

pt + L0
SY p−

1

2
γ(1− ρ2)c(y)2p2y

)

· (g(s, y, t)− p(s, y, t)) = 0,

p(s, y, T ) = g(s, y, T ),

where L0
SY v = LSY v − ρc(y)λ(y)vy − λ(y)σ(y)svs +

1
2σ(y)

2s2vss +
ρc(y)σ(y)svsy + 1

2c(y)
2vyy + (b(y)− ρc(y)λ(y))vy .

Note that p(s, y, t) is the exponential forward indifference price and
it is wealth independent.

The optimal hedging strategy π̃∗ and exercise time τ∗t are

π̃∗
t =

λ(Yt)

γσ(Yt)
+

St

γ
ps(St, Yt, t) +

ρc(Yt)

γσ(Yt)
py(St, Yt, t),

τ∗t = inf{t ≤ u ≤ T : p(Su, Yu, u) = g(Su, Yu, u)} .
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Dual Representation

First, we define the set of equivalent local martingale measures Mf .

Define the local martingale (Zφ
t )0≤t≤T by

Zφ
t = exp

(

−
1

2

∫ t

0

λ(Ys)
2 + φ2

s ds−

∫ t

0

λ(Ys) dWs −

∫ t

0

φs dŴs

)

,

where (φt)0≤t≤T is an Ft-adapted process such that

IEQφ
{

∫ T

0 φ2
t dt

}

< ∞ and IE{Zφ
T} = 1. Then, a probability

measure Qφ defined by dQφ

dP
= Zφ

T is an ELMM w.r.t. P on FT .

By Girsanov’s Theorem, Qφ, and Wφ
t = Wt +

∫ t

0 λ(Ys)ds and

Ŵφ
t = Ŵt +

∫ t

0 φs ds are independent Qφ-Brownian motions.

The process φ is the risk premium for Ŵ . When φ = 0, we obtain
the minimal martingale measure Q0.
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Forward Indifference Price via Entropy Minimization

Treat Q0 as the prior measure, and denote Zφ,0
t = IEQ0

t { dQφ

dQ0 }.

The conditional relative entropy Hτ
t (Q

φ|Q0) of Qφ w.r.t. Q0 over
the interval [t, τ ] as

Hτ
t (Q

φ|Q0) = IEQφ

{

log
Zφ,0
τ

Zφ,0
t

|Ft

}

=
1

2
IEQφ

{
∫ τ

t

φ2
s ds|Ft

}

.

Proposition

The exponential forward indifference price can be represented as

p(St, Yt, t) = ess sup
τ∈Tt,T

ess inf
Qφ∈Mf

(

IEQφ

{g(Sτ , Yτ , τ)|Ft}+
1

γ
Hτ

t (Q
φ|Q0)

)

,

with the optimal risk premium φ∗
t = −γc(Yt)

√

1− ρ2 py(St, Yt, t).

In the classical case, the entropy term is computed w.r.t the minimal

entropy martingale measure QE , instead of Q0.
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Properties of the Forward Indifference Price

The dual representation allows us to deduce the following properties:

If γ2 ≥ γ1 > 0, then p(s, y, t; γ2) ≤ p(s, y, t; γ1) and
τ∗(γ2) ≤ τ∗(γ1) almost surely.

As γ increases to infinity, the penalty term vanishes, yielding

lim
γ→∞

p(s, y, t; γ) = sup
τ∈Tt,T

inf
Qφ∈Mf

IEQφ

{g(Sτ , Yτ , τ)|St = s, Yt = y} .

which is typically called the sub-hedging price (Karatzas-Kou ’98).

As γ ↓ 0, it is optimal not to deviate from Q0 (i.e. φ = 0):

lim
γ→0

p(s, y, t; γ) = sup
τ∈Tt,T

IEQ0

{g(Sτ , Yτ , τ)|St = s, Yt = y} .

In the classical expo. utility case, the zero risk-aversion limit leads
to pricing under QE (Davis Price), not Q0.
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The Classical Marginal Utility Price

The marginal utility price is the per-unit price that the investor is
willing to pay for an infinitesimal position (δ ≈ 0) in the claim (see
Davis ’97, Kramkov-Sirbu ’06):

ĥt =
IE

{

Û ′(X̂∗
T )CT | Ft

}

M ′
t(Xt)

, t ∈ [0, T ],

where X̂∗
T is the optimal Merton portfolio wealth.

We adapt this definition to the case with an American option:

ht =

ess sup
τ∈Tt,T

IE
{

M ′
τ (X̂

∗
τ ) gτ | Ft

}

M ′
t(Xt)

.
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Marginal Utility Price

Proposition

In the stochastic vol. model, consider the Merton value function

M(x, y, t) = sup
π∈Zt,T

IE
{

Û(Xπ
T )|Xt = x, Yt = y

}

. (2)

If M satisfies

Mxy(x, y, t) = Mx(x, y, t)L(y, t), (3)

where L : IR+×[0, T ] 7→ IR is a C1 function such that the risk premium

ϕ(y, t) =
√

1− ρ2c(y)L(y, t), defines an ELMM Qϕ.

Then, the marginal utility price for the American option g is

h(s, y, t) = sup
τ∈Tt,T

IEQϕ

{g(Sτ , Yτ , τ) |St = s, Yt = y} ,

Note that h(s, y, t) is wealth-independent, but depends on the choice of

Û (via L). When Û(x) = −e−γx, Qϕ = QE (MEMM).
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Marginal Forward Indifference Price

Let the discounted stock price be a continuous Itô process:

dSt = Stσt (λt dt+ dWt) .

Let Ut(x) = u(x,At) be the investor’s forward performance process.

The marginal forward indifference price process (p̃t)0≤t≤T for an
American option g is defined as

p̃t =

ess sup
τ∈Tt,T

IE
{

ux

(

Xπ∗

τ , Aτ

)

gτ | Ft

}

ux(Xt, At)
,

where At =
∫ t

0 λ
2
sds.

As it turns out, the marginal forward indifference price is given by

p̃t = ess sup
τ∈Tt,T

IEQ0

{gτ | Ft},

where Q0 is the minimal martingale measure (φ = 0).

Consequently (and surprisingly), p̃t is independent of both the
holder’s wealth and the choice of u.
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Concluding Remarks

Forward investment performance is applicable to pricing
American options.

Exponential forward performance yields a dual representation
that involves relative entropy minimization.

The MMM Q0 also acts as the pricing measure for the
marginal forward indifference price, which is
wealth-independent and risk-preference independent.

Other Applications

Other specifications of forward performance: alternative
solution to the PDE 2ut = (u2

x
/uxx).

Application to (early exercisable) ESO valuation – optimal
exercise timing under forward performance.
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