
Optimal Stopping for Non-linear Expectations

Song Yao
Department of Mathematics, University of Michigan

A joint work with
Erhan Bayraktar, University of Michigan

6th World Congress of the Bachelier Finance Society

Toronto, Canada 6/23/2010

( ) 6/23/2010 1 / 17



Outline

1 Introduction

2 F-Expectations and Their Properties

3 Collections of F-Expectations

4 Optimal Stopping with Multiple Priors

( ) 6/23/2010 2 / 17



I. Introduction

BSDEs and g -Expectations

Given a B.M. B on a proba. space (Ω,F ,P), consider the Backward SDE:

Yt = ξ +

∫ T

t
g(t,Ys ,Zs)ds −

∫ T

t
ZsdBs , t ∈ [0,T ]. (1)

g -expectation via BSDE (Peng ’93)

Assume that the generator g is Lipschitz in (y , z). For any
ξ ∈ L2(FB

T ), (1) admits a unique solution (Y ξ,Z ξ).

The solution mapping Eg : ξ 7→ Y ξ
0 is called a g-expectation; And

∀ t ∈ [0,T ], the conditional g-expectation of ξ w.r.t. FB
t is defined

by Eg [ξ|FB
t ]

4
= Y ξ

t .

Note:

If g has quadratic growth in z , then one can define (condtional)
g -expectation over L∞(FB

T ).
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I. Introduction

Properties of g -Expectations

Assume that g |z=0 = 0 in (2)-(4) below. For any ξ, η ∈ L2(FB
T )

1 (Strict) Monotonicity: If ξ ≤ η, then Eg

[
ξ|FB

t

]
≤ Eg

[
η|FB

t

]
,

∀ t ∈ [0,T ]; Moreover, if “=” holds for some t, then ξ = η;

2 Constant-preserving: Eg

[
ξ|FB

t

]
= ξ, if ξ ∈ L2(FB

t );

3 Time-consistency: Eg

[
Eg

[
ξ|FB

t

]∣∣Fs

]
= Eg

[
ξ|FB

t∧s

]
;

4 “Zero-one law”: Eg [1Aξ|FB
t ] = 1AEg

[
ξ|FB

t

]
, ∀A ∈ FB

t ;

5 Translation invariance: If g is independent of y , then

Eg [ξ + η|FB
t ] = Eg

[
ξ|FB

t

]
+ η, if η ∈ L2(FB

t ).
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I. Introduction

Motivation: Optimal Stopping for g -expectations

Given a stopping time ν and an appropriate reward process Y , we are
interested in finding a moment τ∗(ν) ∈ SB

ν,T such that

Eg

[
Yτ∗(ν)

∣∣Fν

]
= esssup

γ∈SB
ν,T

Eg

[
Yγ

∣∣Fν

]
,

where SB
ν,T

4
=

{
FB -stopping times γ : ν ≤ γ ≤ T

}
.
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II. F-Expectations and Their Properties

Filtration-Consistent Nonlinear Expectations

F = {Ft}t≥0 — a generic right-continuous filtration on (Ω,F ,P);

Sν,γ
4
=

{
F-stopping times σ : ν ≤ σ ≤ γ

}
.

An F-consistent non-linear expectation (F-expectation for short) with
domain Dom(E) = Λ ⊂ L0(FT ) is a family of operators

{
E [·|Fν ] :

Λ 7→ Λν
4
= Λ ∩ L0(Fν)

}
ν∈S0,T

such that for any ∀ ξ, η ∈ Λ

(A1) (Strict) Monotonicity: If ξ ≤ η, then E [ξ|Fν ] ≤ E [η|Fν ],
∀ ν ∈ S0,T ; Moreover, if “=” holds for some ν ∈ S0,T , then ξ = η;

(A2) Time Consistency: E
[
E [ξ|Fν ]

∣∣Fγ

]
= E [ξ|Fν∧γ ], ∀ γ ∈ S0,T ;

(A3) “Zero-one Law”: E [1Aξ|Fν ] = 1AE [ξ|Fν ], ∀A ∈ Fν ;

(A4) Translation Invariance : E [ξ + η|Fν ] = E [ξ|Fν ] + η, if η ∈ Λν .

Note: (A3)+(A4) =⇒ “Constant-preserving”.
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II. F-Expectations and Their Properties

Algebraic requirements on domain Dom(E) = Λ

Obviously, (A3) and (A4) entail that

For any ξ, η ∈ Λ and A ∈ FT , both ξ + η and 1Aξ belong to Λ,

which implies that ξ ∨ η = ξ1{ξ>η} + η1{ξ≤η} ∈ Λ, similarly, ξ ∧ η ∈ Λ;

Moreover, we assume that R ⊂ Λ and that

Λ is positively solid : For any ξ, η ∈ L0(FT ) with 0 ≤ ξ ≤ η, if η ∈ Λ,
then ξ ∈ Λ as well.

Example

Lp(FT ), 0 ≤ p ≤ ∞, are candidates for Λ described above.
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II. F-Expectations and Their Properties

Assumptions on F-expectations

To extend Fatou’s lemma, the Dominated Convergence Theorem and etc.
to the F-expectation E , we assume

(H0) For any A ∈ FT with P(A) > 0, one has lim
n→∞

E [n1A] = ∞;

(H1) For any ξ ∈ Dom+(E) and any {An}n∈N ⊂ FT with lim
n→∞

↑ 1An = 1,

one has lim
n→∞

↑ E [1Anξ] = E [ξ];

(H2) For any ξ, η ∈ Dom+(E) and any {An}n∈N ⊂ FT with lim
n→∞

↓ 1An = 0,

one has lim
n→∞

↓ E [ξ + 1Anη] = E [ξ];

where Dom+(E)
4
= {ξ ∈ Dom(E) : ξ ≥ 0}.

Note:

(H0)-(H2) are satisfied by the linear expectation E , Lipschitz and
quadratic g -expectations.
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II. F-Expectations and Their Properties

Basic Properties

Fatou’s Lemma

Let {ξn}n∈N be a sequence in Dom+(E) that converges a.s. to some
ξ ∈ Dom+(E), then for any ν ∈ S0,T

E [ξ|Fν ] ≤ lim
n→∞

E [ξn|Fν ].

Dominated Convergence Theorem

Let {ξn}n∈N be a sequence in Dom+(E) that converges a.s. to some ξ. If
there is an η ∈ Dom+(E) such that ξn ≤ η, ∀ n ∈ N, then ξ ∈ Dom+(E)
and for any ν ∈ S0,T

lim
n→∞

E [ξn|Fν ] = E [ξ|Fν ].

( ) 6/23/2010 9 / 17



II. F-Expectations and Their Properties

Basic Properties

Fatou’s Lemma

Let {ξn}n∈N be a sequence in Dom+(E) that converges a.s. to some
ξ ∈ Dom+(E), then for any ν ∈ S0,T

E [ξ|Fν ] ≤ lim
n→∞

E [ξn|Fν ].

Dominated Convergence Theorem

Let {ξn}n∈N be a sequence in Dom+(E) that converges a.s. to some ξ. If
there is an η ∈ Dom+(E) such that ξn ≤ η, ∀ n ∈ N, then ξ ∈ Dom+(E)
and for any ν ∈ S0,T

lim
n→∞

E [ξn|Fν ] = E [ξ|Fν ].

( ) 6/23/2010 9 / 17



II. F-Expectations and Their Properties

An F-adapted process X is said to be an E-supermartingale (resp.
E-submartingale) if for any 0 ≤ s < t ≤ T , Xt ∈ Dom(E) and
E [Xt |Fs ] ≤ (resp. ≥) Xs .

Proposition

Let X be a non-negative E-supermartingale.

(1) P
(
X+

t
4
= lim

r∈Q,r ↓ t
Xr exists ∀ t ∈ [0,T ]

)
= 1. To wit, X+ defines an

RCLL F -adapted process.

(2) If X+
t ∈ Dom+(E), ∀ t ∈ [0,T ], then X+ is an E-supermartingale such

that X+
t ≤ Xt , ∀ t ∈ [0,T ]. Moreover, if the function t 7→ E [Xt ] is right

continuous, then X+ is an RCLL modification of X .

Optional Sampling Theorem

Let X be a non-negative right-continuous E-supermartingale (resp.
E-submartingale). If Xν ∈ Dom+(E), ∀ ν ∈ S0,T , then

E [Xν |Fσ] ≤ (resp. ≥) Xν∧σ, ∀ ν, σ ∈ S0,T .

( ) 6/23/2010 10 / 17
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III. Collections of F-Expectations

Pasting two F-Expectations

Let Ei , Ej be two F-expectations with the same domain Λ and
satisfying (H1), (H2).

For any ν ∈ S0,T , the pasting of Ei , Ej at ν is defined by the following
RCLL F-adapted process

Eν
i ,j [ξ|Ft ]

4
= 1{ν≤t}Ej [ξ|Ft ]+1{ν>t}Ei

[
Ej [ξ|Fν ]

∣∣Ft

]
, t ∈ [0,T ]

for any ξ ∈ Λ+. Then Eν
i ,j is an F-expectation with domain Λ+ and

satisfying (H1), (H2). Moreover, if Ei and Ej are both positively-convex,
Eν

i ,j is convex.

Note:

For any ξ ∈ Λ+ and σ ∈ S0,T , Eν
i ,j [ξ|Fσ] = Ei

[
Ej [ξ|Fν∨σ]

∣∣Fσ

]
.

Pasting may not preserve (H0). But, positive-convexity implies (H0).
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III. Collections of F-Expectations

Stable Classes

A class E = {Ei}i∈I of F-expectations is said to be stable if

(1) All Ei , i ∈ I are positively-convex F-expectations with the same
domain Λ and satisfying (H1), (H2);

(2) E is closed under pasting: namely, for any i , j ∈ I and ν ∈ S0,T , there
exists a k = k(i , j , ν) ∈ I such that Eν

i ,j = Ek over Λ+.

We shall denote Dom(E )
4
= Λ+ = Dom+(Ei ), ∀ i ∈ I.
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IV. Optimal Stopping with Multiple Priors

Optimal Stopping with Multiple Priors

The stopper aims to find an optimal moment in a situation of multiple
priors and the Nature is in cooperation with the stopper. More precisely,
the stopper finds an optimal stopping time τ∗ that satisfies

sup
(i ,γ)∈I×S0,T

Ei

[
Y i

γ

]
= sup

i∈I
Ei

[
Y i

τ∗
]
, (2)

Construct

where

E = {Ei}i∈I is a stable class of F-expectations,

Y i
t
4
= Yt +

∫ t
0 hi

sds, ∀ t ∈ [0,T ]: Y is a primary reward process, and
hi is a model-dependent cumulative reward process.
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IV. Optimal Stopping with Multiple Priors

Assumptions on Reward Processes

Y — a non-negative right-continuous F-adapted process such that
Yν ∈ Dom(E ), ∀ ν ∈ S0,T .

{hi}i∈I— a family of non-negative progressive processes such that

(1) For any i ∈ I,
∫ T
0 hi

t dt ∈ Dom(E );

(2) For any i , j ∈ I, ν ∈ S0,T and t ∈ [0,T ]

hk
t = 1{ν≤t}h

j
t + 1{ν>t}h

i
t , dt × dP-a.s.,

where k = k
(
i , j , ν

)
is the index in the definition of stable class.

Moreover, we assume that sup
(i ,γ)∈I×S0,T

Ei

[
Y i

γ

]
< ∞.

Note:

In light of (A4), instead of non-negativity, it suffices to assume that Y ≥ c
for some c < 0.
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IV. Optimal Stopping with Multiple Priors

E -upper Snell Envelope

∀ ν ∈ S0,T , we define Z (ν)
4
= esssup

(i ,γ)∈I×Sν,T

Ei

[
Yγ +

∫ γ
ν hi

tdt
∣∣Fν

]
≥ Yν .

∀ i ∈ I and ∀ ν ∈ S0,T , we set Z i (ν)
4
= Z (ν) +

∫ ν
0 hi

tdt.

Proposition

Given i ∈ I, ∀ ν, γ ∈ S0,T with ν ≤ γ, one has Ei [Z
i (γ)|Fν ] ≤ Z i (ν),

which shows that
{
Z i (t)

}
t∈[0,T ]

is an Ei -supermartingale. Moreover the

process
{
Z (t)

}
t∈[0,T ]

admits an RCLL modification Z 0.

We call Z 0 the E -upper Snell envelope of Y : It is the smallest RCLL
F-adapted process dominating Y such that

{
Z 0

t +
∫ t
0 hi

sds
}

t∈[0,T ]
is an

Ei -supermartingale for any i ∈ I.
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IV. Optimal Stopping with Multiple Priors

Constructing an Optimal Stopping Time

Given ν ∈ S0,T , the stopping time

τδ(ν)
4
= inf

{
t ∈ [ν, T ] : Yt ≥ δZ 0

t

}
∧ T is increasing in δ ∈ (0, 1).

Set τ(ν)
4
= lim

δ↗1
τδ(ν). Then τ(0) is an optimal stopping time for (2).

O.S.P.

Definition

The family {Y i}i∈I is called E -uniformly-left-continuous if ∀ ν, γ ∈ S0,T

with ν ≤ γ and for any sequence {γn}n∈N ⊂ Sν,T with γn ↗ γ

lim
n→∞

esssup
i∈I

∣∣∣Ei

[
n

n−1Yγn +
∫ γn

0 hi
tdt

∣∣Fν

]
− Ei

[
Y i

γ

∣∣Fν

]∣∣∣ = 0.
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IV. Optimal Stopping with Multiple Priors

Theorem

Assume that {Y i}i∈I is “E -uniformly-left-continuous”.

τ(ν) = τ1(ν)
4
= inf

{
t ∈ [ν, T ] : Z 0

t = Yt

}
.

For any ν ∈ S0,T and γ ∈ Sν,τ(ν),

Z (ν) = esssup
i∈I

Ei

[
Yτ(ν)+

∫ τ(ν)
ν hi

tdt
∣∣Fν

]
= esssup

i∈I
Ei

[
Z (τ(ν))+

∫ τ(ν)
ν hi

tdt
∣∣Fν

]
= esssup

i∈I
Ei

[
Z (γ)+

∫ γ
ν hi

tdt
∣∣Fν

]
.

In particular, when ν = 0, τ(0) = inf
{
t ∈ [0,T ] : Z 0

t = Yt

}
satisfies

sup
(i ,γ)∈I×S0,T

Ei

[
Y i

γ

]
= Z (0) = sup

i∈I
Ei

[
Y i

τ(0)

]
.

Conclusion: τ(0), the first time the Snell envelope Z 0 meets Y after time
t = 0, is an optimal stopping time for (2).
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