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Consider a financial market with a bond B(·) = 1 and d
stocks X = (X1, · · · ,Xd) which satisfy for i = 1; · · · d ,

dXi (t) = Xi (t)
(

bi (X (t))dt +
∑d

k=1 sik(X (t))dWk(t)
)
.

(1)

Let H be the set of F-progressively measurable processes
π : [0,T )× Ω→ Rd , which satisfies∫ T

0

(
|π′(t)µ(X (t))|+ π′(t)α(X (t))π(t)

)
dt <∞, a.s.,

in which µ = (µ1, · · · , µd) and σ = (σij)1≤i ,j≤d with
µi (x) = bi (x)xi , σik(x) = sik(x)xi , and α(x) = σ(x)σ′(x).
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The Problem

For each π ∈ H and initial wealth y ≥ 0 the associated wealth
process will be denoted by Y y ,π(·). This process solves

dY y ,π(t) = Y y ,π(t)
d∑

i=1

πi (t)
dXi (t)

Xi (t)
, Y y ,π(0) = y .

In this paper, we want to determine and characterize

The Problem

V (T , x , p) = inf{y > 0|∃π ∈ H s.t.P{Y y ,π(T ) ≥ g(X (T ))} ≥ p}

, where X(0)=x, g : (0,∞)d 7→ R+ is a measurable function.
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Related Work

In the case where p = 1 and g(x) = x1 + · · ·+ xd ,

V (T , x , 1) = inf{y > 0|∃π ∈ H s.t.Y y ,π(T ) ≥ g(X (T )) a.s.}.

In Fernholz and Karatzas (2008), a PDE characterization for
Ṽ (T , x , 1) := V (T , x , 1)/g(x) was derived when V (T , x , 1) is
assumed to be smooth.

In Bouchard, Elie and Touzi (2009), a PDE characterization
of V (t, x , p) was derived.

Assumptions: rather strong, e.g. existence of a unique strong
solution of (1);
main tool used: Geometric dynamic programming principle.

Under the No-Arbitrage condition, they recovered the solution
of quantile hedging problem proposed in Follmer and Leukert
(1999).
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In our paper, we will also work towards a PDE
characterization for V (t, x , p), but

We only assume the existence of a weak solution of (1) that is
unique in distribution;
We admit arbitrage in our model
main tools used: generalization of the results in Follmer and
Leukert (1999), dynamic programming principle under weak
formulation,· · ·
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Assumption M

Let bi : (0,∞)d → R and sik : (0,∞)d → R be continuous
functions and b(·) = (b1(·), · · · , bd(·))′ and
s(·) = (sij(·))1≤i ,j≤d , which we assume to be invertible for all
x ∈ (0,∞)d .

We also assume that (1) has a weak solution that is unique in
distribution for every initial value.

Let θ(·) := s−1(·)b(·), aij(·) :=
∑d

k=1 sik(·)sjk(·) s atisfy

d∑
i

∫ T

0

(
|bi (X (t))|+ aii (X (t)) + θ2

i (X (t))
)
<∞. (2)
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Consequences of Assumptions

We denote by F the augmentation of the natural filtration of
X (·).

Thanks to Assumption M,

every local martingale of F has the martingale representation
property with respect to W (·) (adapted to F).
the solution of (1) takes values in the positive orthant
the exponential local martingale

Z (t) := exp

{
−
∫ t

0

θ(X (s))′dW (s)− 1

2

∫ t

0

|θ(X (s))|2ds

}
,

(3)
the so-called deflator is well defined. We do not exclude the
possibility that Z (·) is a strict local martingale.
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What does the existence of a deflator
entail?

While we do not assume the existence of equivalent local
martingale measures, we assume the existence of a local
martingale deflator (the Z (·) process). This is equivalent to
the No-Unbounded-Profit-with-Bounded-Risk (NUPBR)
condition, introduced in Karatzas and Kardaras (2007).

By Kardaras (2010), NUPBR is equvalent to the
non-existence of arbitrages of the first kind, arbitages that can
be attained through nonegative wealth processes.

So in our model, arbitrage may exist, but we cannot scale it
up to make arbitrary amount of money.
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Let g : (0,∞)d → R+ be a measurable function satisfying

E[Z (T )g(X (T ))] <∞. (4)

We want to determine

V (T , x , p) = inf{y > 0|∃π ∈ H s.t. P{Y y ,π(T ) ≥ g(X (T ))} ≥ p},
(5)

for p ∈ [0, 1].

We will always assume Assumption M and (4) hold.
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Lemma 3.1

We will present a probabilistic characterization of V (T , x , p).

Lemma 3.1

Given A ∈ FT ,

(i) if P(A) ≥ p, then

V (T , x , p) ≤ E[Z (T )g(X (T ))1A].

(ii) if P(A) = p and

ess supA{Z (T )g(X (T ))} ≤ ess infAc{Z (T )g(X (T ))}, (6)

then
V (T , x , p) = E[Z (T )g(X (T ))1A]. (7)
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Proof of Lemma 3.1

(i) Assumption M implies that the market is complete. So
Z (T )g(X t,x(T ))1A ∈ FT is replicable with initial capital
E[Z (T )g(X t,x(T ))1A]. Since P(A) ≥ p, it follows that
V (T , x , p) ≤ E[Z (T )g(X t,x(T ))1A].

(ii) take arbitrary y0 > 0 and π0 ∈ H such that

P{B} ≥ p, where B , {Y y0,π0(T ) ≥ g(X (T ))}.

To prove equality in (7), it’s enough to show that

y0 ≥ E[Z (T )g(X (T ))1A].

Observing that
P(Ac ∩B) = P(A∪B)−P(A) ≥ P(A∪B)−P(B) = P(Bc ∩A)
and using (6), we obtain that
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Proof of Lemma 3.1 (conti.)

y0 ≥ E[Z (T )Y y0,π0(T )]
= E[Z (T )Y y0,π0(T )1B ] + E[Z (T )Y y0,π0(T )1Bc ]
≥ E[Z (T )g(X (T ))1B ]
= E[Z (T )g(X (T ))1A∩B ] + E[Z (T )g(X (T ))1Ac∩B ]
≥ E[Z (T )g(X (T ))1A∩B ] + P(Ac ∩ B) ess infAc∩B{Z (T )g(X (T ))}
≥ E[Z (T )g(X (T ))1A∩B ] + P(A ∩ Bc) ess supA∩Bc{Z (T )g(X (T ))}
≥ E[Z (T )g(X (T ))1A∩B ] + E[Z (T )g(X (T ))1A∩Bc ]
= E[Z (T )g(X (T ))1A].
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Now we want show we can indeed find an A ∈ FT satifying the
coinditions in Lemma 3.1 (ii).

Let F (·) be the cumulative distribution function of
Z (T )g(X (T )).
For any a ∈ R+ define

Aa := {ω : Z (T )g(X (T )) < a}, ∂Aa := {ω : Z (T )g(X (T )) = a},
and let Āa denote Aa ∪ ∂Aa.
Taking A = Āa in Lemma 3.1, it follows that

V (T , x ,F (a)) = E[Z (T )g(X (T ))1Āa
]. (8)

On the other hand, taking A = Aa, we obtain that

V (T , x ,F (a−)) = E[Z (T )g(X (T ))1Aa ]. (9)

The last two equalities imply the following relationship

V (T , x ,F (a)) = V (t, x ,F (a−)) + aP{∂Aa}
= V (t, x ,F (a−)) + a(F (a)− F (a−)).

(10)
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and let Āa denote Aa ∪ ∂Aa.
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Proposition 3.1

Next, we will determine V (T , x , p) for p ∈ (F (a−),F (a)) when
F (a−) < F (a).

Proposition 3.1

Fix arbitrary (t, x , p) ∈ (0,T )× (0,∞)d × [0, 1]

(i) There exists A ∈ FT satisfying P(A) = p and (6). As a result,
we have

V (T , x , p) = E[Z (T )g(X (T ))1A].

(ii) If F−1(p) := {s ∈ R+ : F (s) = p} = ∅, then letting
a := inf{s ∈ R+ : F (s) > p} we have

V (T , x , p) = V (T , x ,F (a−)) + a(p − F (a−)).
= V (T , x ,F (a))− a(F (a)− p)

(11)
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Proof of Proposition 3.1

Assume F−1(p) := {s ∈ R+ : F (s) = p} = ∅. For (i),

Let W̃ be a Brownian motion with respect to F and define

Bb = {ω : W̃ (T )√
T−t

< b}.
Define f (·) by f (b) = P{∂Aa ∩ Bb}. It satisfies

lim
b→−∞

f (b) = 0 and lim
b→∞

f (b) = P(∂Aa).

Moreover, it is continuous and nondecreasing. For continuity:

0 ≤ f (b+ε)−f (b) = P(∂Aa∩Bb+ε)−P(∂Aa∩Bb) ≤ P(Bb+ε∩Bc
b ),

for ε > 0(< 0). As ε→ 0, one observes continuity.

Since 0 < p−P(Aa) < P(∂Aa), thanks to the above properties
of f , there exists a b∗ ∈ R+ satisfying f (b∗) = p − P(Aa).

Define A := Aa ∪ (∂Aa ∩ Bb∗). Observe that
P(A) = P(Aa) + P(∂Aa ∩ Bb∗) = p, and A satisfies (6).
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Proof of Proposition 3.1 (conti.)

For (ii), it follows immediately from (i),

V (T , x , p) = E[Z (T )g(X (T ))1A]
= E[Z (T )g(X (T ))1Aa ] + E[Z (T )g(X (T ))1∂Aa∩Bb∗ ]
= V (T , x ,F (a−)) + aP(∂Aa ∩ Bb∗)
= V (t, x ,F (a−)) + a(p − F (a−)).
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Remark

When Z is a martingale:

Using Neyman-Pearson Lemma, Follmer and Leukert (1999)
showed that

V (T , x , p) = inf
ϕ∈M

E[Z (T )g(X (T ))ϕ] = E[Z (T )g(X (T ))ϕ∗],

(12)
where

M = {ϕ : Ω→ [0, 1] is FT measurable s.t. E[ϕ] ≥ p}. (13)

The randomized test function ϕ∗ is not necessarily an
indicator function. Using Lemma 3.1 and the fine structure of
FT , in Proposition 3.1, we provide another optimizer of (12)
that is an indicator function.
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The PDE Characterization

Example

Consider a market with a single stock, whose dynamics follow
a three-dimensional Bessel process, i.e.

dX (t) =
1

X (t)
dt + dW (t) X0 = x > 0,

and let g(x) = x .

In this case, Z (t) = x/X (t), which is the classical example for
a strict local martingale; see Johnson and Helms (1963). On
the other hand, Z (t)X (t) = x is a martingale.

Thanks to Proposition 3.1 there exits a set A ∈ FT with
P(A) = p such that

V (t, x , p) = E[Z (T )X (T )1A] = px .
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Proposition 3.3

Here, we will give alternative representation of V , which facilitates
its PDE characterization in the next section. Recall that

M = {ϕ : Ω→ [0, 1] is FT measurable s.t. E[ϕ] ≥ p}.

Proposition 3.3

V (T , x , p) = infϕ∈M E[Z (T )g(X (T ))ϕ].
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Proof of Proposition 3.3

Thanks to Proposition 3.1 there exists a set A ∈ FT such that
V (T , x , p) = E[Z (T )g(X (T ))1A]. Since 1A ∈M, clearly

V (T , x , p) ≥ inf
ϕ∈M

E[Z (T )g(X (T ))ϕ].

For the other direction, we will show that for any ϕ ∈M and
a given set A ∈ FT satisfying P(A) = p and (6), we have

E[Z (T )g(X (T ))1A] ≤ E[Z (T )g(X (T ))ϕ].
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Proof of Proposition 3.3 (conti.)

Letting M = ess supA{Z (T )g(X (T ))}, we can write

E[Z (T )g(X (T ))ϕ]− E[Z (T )g(X (T ))1A]
= E[Z (T )g(X (T ))ϕ1A] + E[Z (T )g(X (T ))ϕ1Ac ]
−E[Z (T )g(X (T ))1A]
= E[Z (T )g(X (T ))ϕ1Ac ]− E[Z (T )g(X (T ))1A(1− ϕ)]
≥ ME[ϕ1Ac ]−ME[1A(1− ϕ)] (by (6))
≥ 0.
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Stochastic Control Problem Formulation
Associated PDE

An Additional State Variable

Let us denote by Pp
α(·) the solution of

dP(t) = P(t)(1− P(t))α′(t)dW (t), P(0) = p ∈ [0, 1], (14)

where α(·) is an F−progressively measurable Rd -valued

process such that
∫ T

0 ‖α(s)‖2ds <∞ P-a.s. We will denote
the class of such processes by A.

The next result obtains an alternative representation for V in
terms of P.

Propostion 4.1

V (T , x , p) = infα∈A E[Z (T )g(X (T ))Pp
α(T )] <∞.
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Proof of Proposition 4.1

The finiteness follows from (4).

It can be shown using Proposition 3.3 that

V (T , x , p) = inf
ϕ∈M̃

E[Z (T )g(X (T ))ϕ],

where M̃ = {ϕ : Ω→ [0, 1] is FT measurable s.t. E[ϕ] = p}.
Therefore it’s enough to show that M̃ satisfies

M̃ = {Pp
α(T ) : α ∈ A}.
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Proof of Proposition 4.1 (conti.)

The inclusion M̃ ⊃ {Pp
α(T ) : α ∈ A} is clear. To show the

other inclusion, use the martingale representation theorem:
For any ϕ ∈ FT there exists an F−progressively measurable
Rd -valued process ψ(·) satisfying

E[ϕ|Ft ] = p +

∫ t

0
ψ′(s)dW (s).

Then we see that E[ϕ|Ft ] solves (14) with α(·)

α(t) = 1{E[ϕ|Ft ]∈(0,1)} ·
ψ(t)

E[ϕ|Ft ](1− E[ϕ|Ft ])
.
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The Value Function U

We denote by X t,x(·) the solution of (1) starting from x at
time t and by Pt,p

α (·) the solution of (14) starting from p at
time t. We also introduce Z t,x ,z(·) as the solution of

dZ (s) = −Z (s)θ(X t,x(s))′dW (s), Z (t) = z , (15)

and the value function

U(t, x , p) := inf
α∈A

E[Z t,x ,1(T )g(X t,x(T ))Pt,p
α (T )]. (16)

the original value function V can be written in terms of U as

V (T , x , p) = U(0, x , p).
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Express U under a new measure Q

First define

Λ(t, ·) :=
x1 + · · ·+ xd

Z t,x ,1(·)(X t,x
1 (·) + · · ·+ X t,x

d (·))

= exp

(∫ ·
t

(θ̃(X t,x(u)))′dW̃ (u)− 1

2

∫ ·
t
‖θ̃(X t,x(u))‖2du

)
,

in which θ̃(·) := θ(·)− s ′(·)m(·), where m is defined by
mi (x) = xi/(x1 + · · ·+ xd), i = 1, · · · , d , and

W̃ (s) := W (s) +

∫ s

t
θ̃(X (u))du, s ≥ t.
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(θ̃(X t,x(u)))′dW̃ (u)− 1

2

∫ ·
t
‖θ̃(X t,x(u))‖2du

)
,

in which θ̃(·) := θ(·)− s ′(·)m(·), where m is defined by
mi (x) = xi/(x1 + · · ·+ xd), i = 1, · · · , d , and

W̃ (s) := W (s) +

∫ s

t
θ̃(X (u))du, s ≥ t.
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Express U under a new measure Q (conti.)

There exists a probability measure Q on (Ω,F) such that
dP = Λ(t,T )dQ on each F(T ), for T ∈ (t,∞).Under Q,

W̃ (·) is a Brownian motion and we have that

E[Z t,x ,1(T )(X t,x
1 (T ) + · · ·+ X t,x

d (T ))]

x1 + · · ·+ xn
= Q(T > T ),

for all T ∈ [0,∞), where

T = inf

{
s ≥ t :

∫ s

t
‖θ̃(X t,x(u))‖2du =∞

}
.
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Express U under a new measure Q (conti.)

We will make the following assumption to obtain a representation
of T in terms of X .

Assumption 4.1

‖θ‖2 ≤ C (1 + Trace(a)).

Under this assumption, it follows Q−a.e. that

T = min
1≤i≤d

Ti , in which Ti = inf{s ≥ t : X t,x
i (s) = 0}.

For these claims about the existence and the properties of the
probability measure Q see Fernholz and Karatzas (2008, 2010),
and the references therein.
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Express U under a new measure Q (conti.)

Now, U can be represented in terms of Q as

U(t, x , p) =

(x1 + · · ·+ xd) inf
α∈A

EQ

[
g(X t,x(T ))

X t,x
1 (T ) + · · ·+ X t,x

d (T )
Pt,p
α (T )1{T >T}

]
.
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Express U under a new measure Q (conti.)

The dynamics of X t,x and Pt,p in terms of the Q-Brownian motion
W̃ can be written as

dX t,x
i (s) =

X t,x
i (s)

(∑d
j=1 aij(X t,x(s))X t,x

j (s)

X t,x
1 (s) + · · ·+ X t,x

d (s)
ds +

d∑
k=1

sik(X t,x(s))dW̃k(s)

)
,

for i = 1, · · · , d , and

dPt,p(s) = Pt,p(s)(1−Pt,p(s))α′(s)(−θ̃(X t,x)ds + dW̃ (s)). (17)
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Dynamic Programming

To apply the dynamic programming principle due to Haussmann
and Lepeltier (1990), we assume

Assumption 4.2

For all y ∈ Rd
+ − {0} we have the following growth condition

d∑
i=1

d∑
j=1

yiyj |aij(y)| ≤ C (1 + ‖y‖).

for some constant C .

Assumption 4.3

The mapping (t, x , p)→ E[Z t,x ,1(T )g(X t,x(T ))Pt,p
α (T )] is lower

semi-continuous on t ∈ [0,T ], x ∈ Rd
+, p ∈ [0, 1], for all α ∈ A.
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Dynamic Programming (Conti.)

Proposition 4.2

Under Assumption M, 4.1, 4.2 and 4.3,

(i) U∗ is a viscosity subsolution of

∂tU∗ +
1

2
Trace

(
σσ′D2

x U∗
)

+ inf
a∈Rd

{
(DxpU∗)′σa +

1

2
|a|2D2

pU∗ − θ′aDpU∗
}
≥ 0,

with the boundary conditions
U∗(t, x , 1) = E[Z t,x ,1(T )g(X t,x(T ))], U∗(t, x , 0) = 0, and
U∗(T , x , p) ≤ pg(x).
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Proposition 4.2 (conti.)

(ii) U∗ is a viscosity supersolution of

∂tU∗ +
1

2
Trace

(
σσ′D2

x U∗
)

+ inf
a∈Rd

{
(DxpU∗)

′σa +
1

2
|a|2D2

pU∗ − θ′aDpU∗

}
≤ 0 (18)

with the boundary conditions
U∗(t, x , 1) = E[Z t,x ,1(T )g(X t,x(T ))], U∗(t, x , 0) = 0, and
U∗(T , x , p) ≥ pg(x).
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Remark

Let us consider the PDE satisfied by the superhedging price
U(t, x , 1):

0 = vt +
1

2
Tr(σσ′D2

x v), on (0,T )× (0,∞)d , (19)

v(T−, x) = g(x), on (0,∞)d . (20)

Unless additional boundary conditions are specified, this PDE
may have multiple solutions, see e.g. the volatility stabilized
model of Fernholz and Karatzas (2008). Even when additional
boundary conditions are specified, the growth of σ might lead
to the loss of uniqueness. In the one-dimensional case one can
determine an explicit condition which is sufficient and
necessary for uniqueness (non-uniqueness), see e.g. Bayraktar
and Xing (2010).
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Remark (conti.)

Let ∆U(t, x , 1) be the difference of two solutions of
(19)-(20). Then both U(t, x , p) and U(t, x , p) + ∆U(t, x , 1)
are viscosity supersolution of (18) (along with its boundary
conditions). As a result when (19) and (20) has multiple
solutions so does the PDE for the function U.
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Thank you very much for your attention!
Q & A
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