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Definition of the indifference value
The indifference value of a nontradable asset

Definition of the indifference value

Financial market:
Risk-free bank account yielding zero interest
Risky asset with price process S = (St )0≤t≤T

Financial product with payoff H at time T
In mathematical terms, S is a semimartingale and
H a random variable on some filtered probability space(
Ω,F ,F = (Ft )0≤t≤T ,P

)
.

Problem formulation:
Valuation of H based on the risk preferences of an investor
Assumption: The investor has an exponential utility
function U(x) = −exp(−γx), x ∈ R, for a fixed γ > 0
U(x) =̂ Investor’s utility if (s)he has capital x ∈ R.
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Definition of the indifference value
The indifference value of a nontradable asset

Definition
The indifference value h of H is implicitly defined by

sup
ϑ∈A

E
[
U
(∫ T

0
ϑt dSt

)]
= sup

ϑ∈A
E
[
U
(∫ T

0
ϑt dSt + H − h

)]
,

where A is the set of admissible trading strategies.

The value h makes the investor
indifferent (in terms of maximal
expected utility) between buying H
for the amount h and not buying H.

source: www.myownproperty.co.uk
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Definition of the indifference value
The indifference value of a nontradable asset

U(x) = −exp(−γx) for a fixed γ > 0w� direct calculation

The indifference value h is given by

h =
1
γ

log
V 0

V H ,

V H := inf
ϑ∈A

E
[
exp
(
−
∫ T

0
γϑt dSt − γH

)]
.

w�
The focus lies on V H .
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Definition of the indifference value
The indifference value of a nontradable asset

The indifference value of a nontradable asset

The underlying model:
Two Brownian motions W and Y have constant
instantaneous correlation ρ; i.e., W = ρY +

√
1− ρ2Y⊥

for a Brownian motion Y⊥ independent from Y .

The traded stock S is given by
dSt

St
= µt dt + σt dWt , 0 6 t 6 T , S0 > 0.

Assumption: µ and σ are predictable with respect to
(Yt )0≤t≤T , the filtration generated by Y .
The nontradable claim H is YT -measurable.

Example: Executive stock options
Manager receives options H.
Because of legal restrictions, (s)he can hedge H only
partially by trading in a correlated stock or an index.

?

6correlation ρ
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Definition of the indifference value
The indifference value of a nontradable asset

Proposition (An explicit formula; Tehranchi 2004)
Under boundedness assumptions, one has

V H =

(
EP̂

[
exp
(
−γH − 1

2

∫ T

0

µ2
t

σ2
t

dt
)1−ρ2]) 1

1−ρ2

,

where the probability measure P̂ is given by

dP̂
dP

:= exp
(
−
∫ T

0

µt

σt
dWt −

1
2

∫ T

0

µ2
t

σ2
t

dt
)
.
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Definition of the indifference value
The indifference value of a nontradable asset

Variable correlation:
So far: Wt = ρYt +

√
1− ρ2Y⊥t

=
∫ t

0 ρdYs +
∫ t

0

√
1− ρ2 dY⊥s with constant ρ

Now: Wt =
∫ t

0 ρs dYs +
∫ t

0

√
1− ρ2

s dY⊥s with variable ρ

Proposition (Bounds; Frei and Schweizer 2008)

For (Yt )0≤t≤T -predictable ρ with boundedness assumptions,(
EP̂

[
exp
(
Ĥ
)1/δ ])δ ≤ V H ≤

(
EP̂

[
exp
(
Ĥ
)1/δ])δ

,

where Ĥ := −γH − 1
2

∫ T

0

µ2
t

σ2
t

dt and

δ := sup
t ∈ [0,T ]

∥∥∥∥ 1
1− ρ2

t

∥∥∥∥
L∞
, δ := inf

t ∈ [0,T ]

1
‖1− ρ2

t ‖L∞
.

Christoph Frei Convergence results for the indifference value



Indifference valuation
A convergence result for BSDEs
Applying the convergence result

Definition of the indifference value
The indifference value of a nontradable asset

Variable correlation:
So far: Wt = ρYt +

√
1− ρ2Y⊥t

=
∫ t

0 ρdYs +
∫ t

0

√
1− ρ2 dY⊥s with constant ρ

Now: Wt =
∫ t

0 ρs dYs +
∫ t

0

√
1− ρ2

s dY⊥s with variable ρ

Proposition (Bounds; Frei and Schweizer 2008)

For (Yt )0≤t≤T -predictable ρ with boundedness assumptions,(
EP̂

[
exp
(
Ĥ
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Definition of the indifference value
The indifference value of a nontradable asset

Ideas for an approximation of V H :
1 If ρ is piecewise constant in time, there is an explicit

formula for V H . piecewise constant process

-1

-0.5

0

0.5

1

time

2 Approximate a general ρ by a sequence (qn)n∈N of
piecewise constant processes.

3 Show that values corresponding to qn converge to V H .
Problem: It is difficult to show this directly. −→ study BSDE
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2. A convergence result for BSDEs

Christoph Frei Convergence results for the indifference value



Indifference valuation
A convergence result for BSDEs
Applying the convergence result

Let B be a d-dimensional Brownian motion and consider

dΓt = f (t ,Zt )dt + Zt dBt , 0 ≤ t ≤ T , ΓT = H,

where
f : [0,T ]× Rd × Ω→ R
H is a bounded random variable.

The results hold not only in a Brownian setting, but more
generally in a continuous filtration (i.e., a filtration where
any local martingale has a continuous version).
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Theorem (Convergence of BSDEs)

Fix t ∈ [0,T ] and let (f n,Hn)n=1,2,...,∞ be a sequence of
parameters such that

f n satisfy some quadratic-growth and local-Lipschitz
conditions in z (uniformly in n = 1, . . . ,∞);
limn→∞Hn = H∞ a.s. and for almost all (s, ω) ∈ [t ,T ]× Ω,
limn→∞ f n(s, z)(ω) = f∞(s, z)(ω) for all z ∈ Rd .

Then there exist unique solutions (Γn,Z n) with parameters
(f n,Hn) for n = 1, . . . ,∞, and

lim
n→∞

Γn
t = Γ∞t a.s., lim

n→∞
E
[∫ T

t
|Z n

s − Z∞s |2 ds
]

= 0
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Corollary (Special form of f n)
Suppose additionally that

Hn converges to H∞ in L∞ as n→∞;
there exist sequences (dn)n∈N and

(
d

n)
n∈N of determin-

istic functions which converge to 1 uniformly on [t ,T ]

such that f n = dnf + d
n
f for every n = 1, . . . ,∞.

Then we have

sup
s∈[t ,T ]

|Γn
s − Γ∞s | → 0 in L∞ as n→∞.
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A BSDE characterization of V H

An approximation of V H

3. Applying the convergence result
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A BSDE characterization of V H

An approximation of V H

A BSDE characterization of V H

Revisiting the nontradable asset model:
Two Brownian motions W and Y have time-dependent

instantaneous correlation ρ; dWt = ρt dYt +
√

1− ρ2
t dY⊥t

for a Brownian motion Y⊥ independent from Y .
The traded stock S is given by

dSt

St
= µt dt + σt dWt , 0 6 t 6 T , S0 > 0.

Assumptions: µ and σ are predictable with respect to
(Yt )0≤t≤T , the filtration generated by Y . The nontradable
claim H is YT -measurable.
The indifference value h is given by h = 1

γ log V 0

V H , where

V H := inf
ϑ∈A

E
[
exp
(
−
∫ T

0
γϑt dSt − γH

)]
.
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A BSDE characterization of V H

An approximation of V H

A BSDE characterization of V H :
We have V H = exp(−γΓ0), where Γ solves the BSDE

dΓt =

(
γ

2
(1− ρ2

t )Z 2
t + ρtλtZt −

λ2
t

2γ

)
dt + Zt dYt , ΓT = H

with λ := µ/σ.

In the notation of the second part:

dΓt = f (t ,Zt ) dt + Zt dBt , ΓT = H,

where B := Y and f (t , z) := γ
2 (1− ρ2

t )z2 + ρtλtz −
λ2

t
2γ

Remark:
The application can be done for (Yt )0≤t≤T -predictable ρ, but
we consider here only a deterministic, time-dependent ρ.
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A BSDE characterization of V H

An approximation of V H

An approximation of V H

1 If ρ is piecewise constant in time, there is an explicit
formula for the solution of the BSDE.

-1

-0.5

0

0.5

1

time

2 Approximate a general ρ by a sequence (qn)n∈N of
piecewise constant processes.

3 Apply the convergence result to show the convergence
of the solutions of the corresponding BSDEs.
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A BSDE characterization of V H

An approximation of V H

1. Step: Piecewise constant processes
Let q : [0,T ]→ ]−1,1[ be of the form

q = q11{t0} +
n∑

j=1

qj1]tj−1,tj ] for t = t0 ≤ t1 ≤ · · · ≤ tn = T .

Then the BSDE

dΓq
t =

(
γ

2
(1− q2

t )|Z q
t |

2 + ρtλtZ
q
t −

λ2
t

2γ

)
dt + Z q

t dYt , ΓT = H

has the explicit solution Γq
0 with exp

(
−γΓq

0

)
equal to

EP̂

[
· · ·EP̂

[
EP̂

[
eĤ(1−|qn|2)

∣∣∣Ytn−1

]1−|qn−1|2

1−|qn|2
∣∣∣∣Ytn−2

]1−|qn−2|2

1−|qn−1|2
· · ·

] 1
1−|q1|2

where

Ĥ := −γH−1
2

∫ T

0
λ2

t dt ,
dP̂
dP

:= exp
(
−
∫ T

0
λt dWt−

1
2

∫ T

0
λ2

t dt
)
.
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A BSDE characterization of V H

An approximation of V H

1. Step: Piecewise constant processes
Let q : [0,T ]→ ]−1,1[ be of the form
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γ

2
(1− q2
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A BSDE characterization of V H

An approximation of V H

2. Step: The approximation of ρ
Question: Which functions ρ : [0,T ]→ [−1,1] can be
approximated pointwise by piecewise constant functions?
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1

time
-1

-0.5

0

0.5

1

time

Idea: This approximation is reminiscent of the construction
of the Riemann integral.
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A BSDE characterization of V H

An approximation of V H

Recall that a bounded function g : [0,T ]→ R is Riemann
integrable if and only if it is Lebesgue-almost everywhere
continuous on [0,T ].

Assume that ρ : [0,T ]→ [−1,1] is Riemann integrable. Let

0 = tn
0 ≤ tn

1 ≤ · · · ≤ tn
`n = T , sn

j ∈ [tn
j−1, t

n
j ]

be partitions with limn→∞
(
max1≤j≤`n (tn

j − tn
j−1)

)
= 0 and

set qn :=
∑`n

j=1 ρ(sn
j )1]tn

j−1,t
n
j ]. Then

lim
n→∞

qn(x) = ρ(x) for almost all x ∈ [0,T ].
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An approximation of V H

3. Step: The application of the convergence result

Theorem (Approximating V H )

Assume that ρ is Riemann integrable and ]−1,1[-valued. Let

0 = tn
0 ≤ tn

1 ≤ · · · ≤ tn
`n = T , sn

j ∈ [tn
j−1, t

n
j ]

be partitions with limn→∞
(
max1≤j≤`n (tn

j − tn
j−1)

)
= 0. Then

V H = lim
n→∞

EP̂

[
· · ·EP̂

[
eĤ(1−|ρ(sn

`n
)|2)
∣∣∣Ytn

`n−1

]1−|ρ(sn
`n−1)|2

1−|ρ(sn
`n

)|2 · · ·

] 1
1−|ρ(sn

1 )|2

with Ĥ := −γH − 1
2

∫ T
0 λ

2
t dt .
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Indifference valuation BSDE
Characterization

BSDE methods

Approximation of the Convergence result
indifference value for BSDEsApplication

-
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Overview

Thank you very much for your attention!
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Appendix

Admissible strategies

A consists of all predictable ϑ = (ϑt )0≤t≤T such that∫ T
0 ϑ2

t dt <∞ a.s. and(
exp
(
−γ
∫ t

0 ϑs dSs
))

0≤t≤T
is of class (D).

The latter means that the set{
exp
(
−γ
∫ τ

0 ϑs dSs
)∣∣∣ τ is a stopping time

}
is uniformly integrable.
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Alternative measurability conditions

Assumptions:
µ, σ are predictable w.r.t. the filtration generated by W .
H is ŶT -measurable, where ŶT is the sigma-field
generated by Ŷt := Yt +

∫ t
0 ρs

µs
σs

ds, 0 ≤ t ≤ T .

Proposition (Bounds; Frei and Schweizer 2008)
For general ρ with boundedness assumptions, one has(

EP̂

[
exp
(
Ĥ
)1/δ ])δ ≤ V H ≤

(
EP̂

[
exp
(
Ĥ
)1/δ])δ

,

where Ĥ := −γH − 1
2

EP̂

[∫ T

0

µ2
t

σ2
t

dt
]

and

δ := sup
t ∈ [0,T ]

∥∥∥∥ 1
1− ρ2

t

∥∥∥∥
L∞
, δ := inf

t ∈ [0,T ]

1
‖1− ρ2

t ‖L∞
.
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A general BSDE characterization of V H

Without measurability assumptions on ρ, µ, σ and H:
From Hu, Imkeller and Müller (2005), we have
V H = exp(−γΓ0), where Γ solves the (Ft )0≤t≤T -BSDE

dΓt =

(
γ

2
Ž 2

t − λt Ẑt −
λ2

t
2γ

)
dt + Ẑt dWt + Žt dW⊥

t , ΓT = H

for a Brownian motion W⊥ independent of W , and λ := µ/σ.

Problem: This BSDE cannot be approximated by a BSDE with
an explicit solution.
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Approximation under stochastic correlation

Theorem (Approximating V H )

Assume that ρ is (Yt )0≤t≤T -predictable, left-continuous and
]−1,1[-valued. Let (0 = τn

0 ≤ · · · ≤ τn
`n

= T )n∈N be (Yt )0≤t≤T -
stopping times with limn→∞

(
max1≤j≤`n (τn

j − τn
j−1)

)
= 0 a.s.

Then we have

V H = lim
n→∞

EP̂

[
· · ·EP̂

[
e

Ĥ(1−|ρτn
`n−1

|2)∣∣∣Yτn
`n−1

]1−|ρτn
`n−2

|2

1−|ρ
τn
`n−1

|2

· · ·

] 1
1−|ρ

τn
0
|2

with Ĥ := −γH − 1
2

∫ T
0 λ

2
t dt .
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Convergence of BSDEs in a continuous filtration

Setting:
Assume that F is a general continuous filtration, i.e.,
all local martingales are continuous.
Fix an Rd -valued local martingale M = (Mt )0≤t≤T .
Take a nondecreasing and bounded process D such that〈
M j〉� D for all j = 1, . . . ,n, e.g., D = arctan

(∑n
j=1
〈
M j〉).

We consider the BSDE

dΓt = f (t ,Zt )dDt +
β

2
d〈N〉t + Zt dMt + dNt , 0 ≤ t ≤ T , ΓT = H,

where
f : Ω× [0,T ]× Rd → R;
β ∈ R;
H is a bounded random variable.
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A solution is a triple (Γ,Z ,N), where
Γ is a bounded continuous semimartingale;

Z is a predictable process with E
[∫ T

0 Z ′t d〈M〉t Zt

]
<∞;

N is a square-integrable martingale null at 0 and strongly
orthogonal to M.

to be found

dΓt = f (t ,Zt )dDt +
β

2
d〈N〉t + Zt dMt + dNt , 0 ≤ t ≤ T , ΓT = H,

given
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�
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@
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Theorem (Convergence of BSDEs)

Fix t ∈ [0,T ] and let
(
f n, βn,Hn)

n=1,2,...,∞ be a sequence of
parameters such that

f n satisfy some quadratic-growth and local-Lipschitz
conditions in z (uniformly in n = 1, . . . ,∞);
limn→∞ β

n = β∞, limn→∞Hn = H∞ a.s. and for
(D⊗P)-almost all (s, ω) ∈ [t ,T ]× Ω,
limn→∞ f n(s, z)(ω) = f∞(s, z)(ω) for all z ∈ Rd .

Then there exist unique solutions (Γn,Z n,Nn) with parameters
(f n, βn,Hn) for n = 1, . . . ,∞, and

lim
n→∞

Γn
t = Γ∞t a.s., lim

n→∞
E
[
〈Nn − N∞〉T − 〈Nn − N∞〉t

]
= 0,

lim
n→∞

E
[∫ T

t
(Z n

s − Z∞s )′ d〈M〉s (Z n
s − Z∞s )

]
= 0.
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Precise assumptions of the convergence result

There exist a nonnegative predictable κ1 with∥∥ ∫ T
0 κ1

s ds
∥∥

L∞ <∞ and a constant c1 such that∣∣f n(s, z)
∣∣ ≤ κ1

s + c1|z|2

for all s ∈ [0,T ], z ∈ Rd and n = 1, . . . ,∞.

There exist a nonnegative predictable κ2 with∥∥ ∫ T
0 |κ

2
s |2 ds

∥∥
L∞ <∞ and a constant c2 such that∣∣f n(s, z1)− f n(s, z2)∣∣ ≤ c2(κ2

s +
∣∣z1∣∣+

∣∣z2∣∣)∣∣z1 − z2∣∣
for all s ∈ [0,T ], z1, z2 ∈ Rd and n = 1, . . . ,∞.
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