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 From individual agent's point of view, the asset prices today de-
pend on the pricing kernel, which depend on future consumption,
which depends on today's investment, which depends on today's as-

set prices
e Therefore, each market agent must “calculate” her portfolio choice

and consumption plan simultaneously backward and forward.
e The (heterogeneous) agents differ in their initial wealth and con-

sumption preferences throughout time, and, consequently, use dif-
ferent pricing kernels. Nevertheless, in equilibrium they must
agree on how the assets are priced, which ultimately determines
how they trade with one another.




Three main contributions:
e Krusell and Smith (1998): in a vast population of individuals with

independent idiosyncratic risks, incomplete-market equilibrium is

close to a complete-market equilibrium.
e Heaton and Lucas (1996): equilibrium with two classes of agents,

incomplete market, trading costs and borrowing constraint. They

conclude that the borrowing constraint is what makes a difference.
o Note: tatonnement only shows how the portfolios would behave as a
MC in the long run, provided that the agents somehow know how to
choose optimally.



e However
o Basak and Cuoco (1998) have a model with limited participation

(their case of limited participation is very close to an incomplete-mar-
ket case) show that, when some people are prevented from accessing

the market, the market Sharpe ratio is vastly increased.
o And Gomes and Michaelides (2006) attribute the large risk premia in

their model mainly to imperfect risk sharing among stock holders rath-

er than the limited participation.

o Constantinides and Duffie (1996) attribute them to countercyclical
variation in the cross-section of household consumption.

o Other general discussions of this issue include Guvenen (2004, 2006)

and Krueger and Lustig (2007).



e Develop a notion of equilibrium which does not rely on

“stationarity,” or a “fixed point argument” of any kind, i.e., applies
to economies with a finite time-horizon.

e Nevertheless, make it possible to work with a “large” ( = 3)
number of periods and trees with “many” ( = 3) spikes.

e Develop a method which allows one to compute incomplete-
market equilibria “routinely” (when they exist) — and without the
use of super-computers.

e (Calculate the equilibrium as a function of the initial wealth.



e Develop a (recursion-based) “shadow DP” method which is

analogous to the classical DP except that the value function is

replaced by the dual variables (state prices).
e Develop a dynamic “only-backward” numerical algorithm based on

the interpolation dynamic programming technique (AL, 2008).
e Explain how incompleteness constraints the distribution of wealth

in a way that removes any degree of freedom that the
incompleteness creates.



e there are exogenous state variables driving the economy (say,
initial wealth and output)
e but, in an incomplete market, there are also endogenous state

variables: market prices for securities, individual endowments,

individual state prices
e the system for computing these quantities is “forward-backward”:

to solve for tomorrow's individual state prices, one needs today's
state prices, but tomorrow's wealths and security prices (as
functions of tomorrow's state prices)



e We adopt the “dual approach” developed at the individual level,

which is similar to He and Pearson (1991):
o the unknowns are agent-specific state prices
e This has already been done in two ways:
o Cuoco and He (1994, unpublished): recursive method in continuous
time, but with exogenous volatility
o Cuoco and He (2001, published): global (as opposed to recursive)

method on a tree



o Will work with general tree structures (the time is discrete and all
information sets are finite) and develop a recursive — as opposed

to global — method.
o however, the equilibrium that we obtain is a global equilibrium — not

the recursive equilibrium discussed in Kubler and Schmedders (2002)
o and allows the tree to be recombining — when the exogenous

variables are Markovian, for example
o Will not be inventing the wheel: our approach is essentially a

variation of the stochastic principle of maximum with one (huge)
difference: the Hamiltonian is endogenous




e t=0,1,... T T<o
e X := afinite set of uncertain states of the economy
o The process of revealing the true state to the market observers is

modeled by a tree-structure, defined as a finite chain of successive
partitions of the set :

F={F;t=0,1, .. T},

Fo =12}, Fr={{o} o€}
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/t(f, = [R") = {(fHT & [R”)TT:_S; fi+r isFé -measurable,
O<7t<T-1

when f € /y(Z, F; R"), we write f 1= fi((§) = fi(0), EeF,oeé
o The set X is endowed with an objective probability measure

n(c)e]0,1], ceX, Z(TEZZT(O') =1



consists of
e asingle perishable good (numeraire)
e L+ 1 agents consume the perishable good
o individual endowment streams &' € (X, F; R,), 0 <i<L
o individual consumption streams c' € (X, F; R..), 0 <i<L (NB:
agents must consume in order to survive)
o individual (strictly concave and differentiable) consumption
preferences

U:R,,~R,0<i<L 0<t<T,

e N traded securities with associated price vector S ZO(Z, F: [R’J\r’ )
o dividend streams &’ € £5(Z, F; R,), 1< j<N
o the information structure is sufficiently rich: N < #(&¢7), € € F4,
0<t<T



upon entering state & e[F, with wealth W! = W! ¢ agent i is con-

cerned with

. . T-t
Ji©) =Ulco+ > E Up,.(cerr)|, 0<i<l,
=1

given his choice of a consumption plan ¢’ € £o(¢, F*; R, ) and
trading strategy 6 € £(¢, F*; RY) that can finance ¢’ (together with

W!) in the sense that the following flow budget constraint
(“marketability” condition) holds

i I
Ct+T+0t+T'St+T :8t+T+ Wt"‘T' T: O, (RRY) T_t,
] [
where W, =6, _ 1 -(Serr +0¢i1)
investor i's value function entering period t is

Vg(Wt) 1= sup { jt’;(c) ; cisfesible for the entering wealth Wt}

Vi(We) = {Vie(Wee); € €



Theorem 0 (The PDP holds): If Vi(W{)=/i(c') and if

= KO(Z, F: RY ) can finance ¢/, given the initial wealth W}, then, for

any 0 < t < T, the trading strategy {6}, 6. ,, ..., 07} finances the con-

sumption plan {c}, ci,;, ..., ¢} with entering wealth (for period t)
Wi =0ty (Se +6)

and one has

Vi(W,) = Upl(cy) + Ee| Vi1 (6L (Sear +6e41))] -



During period t agent i observes W! and S; and decides about his
consumption ¢; € R, and portfolio plan H{L e RY, so that x* = ¢; and
y* = 6L solve the optimization problem
Maximize Fi(x, y) := UL(x) + [Et[V£+1(Y' (Ser1 + 5t+1))]
subjectto: x+ y-S, =&l + W),

xeRyy, y={y1, - yn} €R",



During period t agent i is faced with the Lagrangian
Lix, y, ) = F(x, y) + (e + We = x = y-S,)
xe[R++,ye[RN, AeR.

and chooses his immediate consumption ¢; € R, immediate trad-

ing strategy 6, € R" and local (in time and state of the economy) Ar-
row-Debreu shadow ¢; € R in such a way that

Li(c, O, o) = infycr SUD, (g err L% 1, D).



o (Vi) (65 (Seer +6041)) X (Shay +6L11)] = 6: SL,
1<j<N,
(0U}) (ce) = ¢¢

I I I

these two properties are now crucial:
(V) (W) = ¢e(Wy)
BLWy) = (L (W), GUWIT (V2 FL) (co(Wy), 0:(We)) {ci(Wy), (W)



Theorem 1: Given a price system S € £o(Z, F; RY) and initial
wealths W6, 0 <i < L, then the following constraints (in all states of

the economy) on the consumption plans ¢ € #4(Z, F; R,,), the trad-
ing strategies ¢ e FO(Z, F: RN ), and the individual state prices

P ely(E, F;R,.)0<i<L:
Ee[¢).1 (SLy +0l4)] =0l S, 1<j<N, 0<t<T
(0U)(ct)=¢., 0<i<L, 0<t<T,
ct+6-S, =+ W, 0<t<T,
where W, :=6, {-(S;+0d¢), 0<t<T,

(%)

are necessary and sufficient in order to claim that all agents achieve
their goals at all times and in all states of the economy. Further-
more, the value functions V!(-), are concave in any state and (*) can

be satisfied with at most one choice for (ci, 4 gbi).



Definition: Given initial wealths Wé,, 0 <i< L, equilibrium in the

economy is the choice of
S e to(Z, F;RY),
¢ ety(Z, F;R.y), 0 €to(Z F;RY), ¢' € to(Z, F;
R.,),0<i<L

so that (*) holds and, furthermore the following aggregate resource
constraint is satisfied at all times and in all states of the economy

ZL , "
cl=e, = E P
jzo t "t =0 °t




Py = Clt/ €t
¢, = (0U}) (ct) = (0U}) (ot e:) <= ¢t =di(pt) = di
Pt), Pt € A.LH

L L+1
A, = {XE{XO, X1, ey XL} ERYT X0+ X1 4+ o+ X, = 1}

¢i:AI;+|—>[R++



To obtain an equilibrium one must solve

31(0e) St = E¢[@,1(0e+1) (Se1 +0e1)], 0<i<L, 0<t<T,
ple+6-Si=e+W!,0<i<L 0<t<T,

o)+ pr+..+pi=1,0<t<T,

By the beginning of period t one must be able to compute the peri-
od-t consumption levels for all agents and by the end of period ¢
one must be able to compute the prices at which securities are to be
traded in period t. However, this cannot be achieved by solving the
system period by period because the consumption ratios p! appear

in the equations for period t, in which they are endogenous, and al-
so in the equations for period (t — 1) in which they are exogenous.



To obtain an equilibrium one must solve
¢1(0) St = Ee| 11 (0e+1) Ses1 + 61|, 0<i<L, 0<t<T-1,

] [ o I
Pts1 €t+1 T 9t+1 'St+1 = &1 T t+1 )

:=F£+1 :=9£'(St+1 +0¢41)

O<i<L O<t<T-1,
p?+1+pg+1+...+p%+1:1, O<1<L, Ogth_l,

Hkockek kek

p6€0+96°50:86+w(l), O<i<lL,

00+ pg+ . t+ph=1.



To obtain an equilibrium one must solve

¢£+1(pt+1)

St:[Et[ (St+1+5t+1)]; O<i<L, O<t<T-1,

¢i(,0t)
0. - (Sps1+01)=F  +ple1—6,4, 0<i<L O<st<T-1,

ot P+t pr =1 0<i<L O0<t<T-1,
0

¢i+1 (Pe+1)
dL(0¢)

¢(t)+1(Pt+1)
&2 (0¢)

[Et[ (Ses1 + 5t+1)] = [Et[ (Ses1 + 5t+1)];

1<i<l, (**)
0, - (Sex1 +0e1) = Fpiq + Piyq €641 — 44, 0<i <L,
P?+1 +pt}+1 T +,0£+1 =1, 0<i<l,
givens: Fl,,0<i<L, p, e R &S, 4

unknowns: #. e RY, 0 <i< L, prq € R



Lemma:

¢?+1(pt+1) ( i

FZ::[Et[ t1_8£1+pilet+1]-
B T )

Corollary:

L , L .
Zi_oeg.(st+1+5t+1)=o — > Fi=0,0<t<T

i=



Remark 1: the givens F.,,, 0 <i<L & S;,1 are “given” only as func-
tions of the unknowns p;.q € R, ie, FI, (), 0<i<L, & S;,1(+)
are defined as functions on A% _.

Remark 2: solving (**) means writing p;.1 = pr+1(p:) and 6L = 6(p,).

Remark 3: p;.1 and 6. depend on p; only through the ratio Zt((’; ’;))
Remark 4: the functions
Per1(Pes1)
A%, 3 P — Slpo) = Ee| =5 (St +6041)|
¢¢ (Ot)
i ¢0 (Pe+1) [ - -
AL e Flpo) = B 5 P (Bl el + s )|
t \Mt

can be approximated by interpolating function objects defined on
some finite interpolation grid inside A%, .



Remark 5: To close the calculations one must compute p;y from the

system
pheg+6,-So=eh+ W), 0<i<L,
0 1 L
p0+p0+...+p0:1.

Remark 6: The relation

¢i+1(pt+1)
St =k, : (St+1 + O0¢s41)
[ ¢ (0¢) ' ' ]
says that all market agents agree on the security prices. We can
write
1 " 1 E¢|¢t1(0es1)
5, = ,- E, tj;1(Pt+1) o +5t+1)], ,- _ t[(ﬁt? Pt+1 ]
1+ri(p)  Ed[t1(0e)] 1+r{(pe) SE(pe)



Ata given node ¢ € [F, with K, := #(£7), (**) contains (Kg -+ N) (L+1)
unknowns and a total of

NL+K(L+1)+K;=(Ke+N)(L+1)+K;—N

equations. We always suppose N < K, and

Rank {St+1(pt+1,,7) + 01,3 1 € [Féi} =N,Véel, 0<t<T-1,

completeness <= N = K.



When the market is complete the flow budget constraints are
merely expressions for the optimal portfolios:

. . . . »
0, = (Fioq + Pri1 €41 — Ety1) Sex1 +6e41)

and can be eliminated from the system. The kernel conditions give

Zn eF} (Sert(Perry) + Oerin)

¢i+1(pt+1,n) - ¢?+1(pt+1,77) ni(n) _ 0
¢t dr (&)

and are the same as

{“+1(pt+1,n) _ ¢?+1(Pt+1,;7)
¢ (p¢) 2 (pe)

, 1<i<L, ne ).



We now have L K; = L N Kernel conditions and K; = N aggregate re-

source constraints for a total of Ks(L+1) = N(L+ 1) unknowns
p{“+1,77 .
If the market is incomplete (K> N) there are more constraints

than the dimension of ¢
i L i i +
& (St+1,n + 5t+1,n) — Y t+ln + pt+1,;7 Ct+1y — 8t+1,17' ne (f );

The fact that the above system has a solution imposes K — N con-

straints on the right sides for every fixed 0 <i < L. This imposes
(K — N) (L + 1) conditions on the right sides — (K¢ — N) constraints

for each agent. Because of the market clearing condition, the

(Kg — N) constraints on agent 0 are redundant.



Remark: The flow budget constraints entail (Ksc — N) L restrictions

on investors wealths and consumption, which allow one to
eliminate the portfolios 6. We are therefore left with

LN+ (Ke—N)L+K: =Ke (L+1)
constraints for the same number of variables p’;ﬂ,n, O<i<lI,

ne ).



Basac-Cuoco (1998) I: two agents, agent 0 holds a bond, agent 1
holds a stock and only the bond is traded. The uncertainty is repre-

sented by a binomial tree
In our setting there is only one traded security S; € R, and the sys-
tem becomes.

¢?+1(Pt+1) ¢g+1(pt+1)
¢2(pr) dL(pr)
0

0 0 0
Op - (St1,u + 5t+1,u) = Ft+1,u T Pt+1u Ct+lu ~ €ty

1 _rl1 1 1
Ht '(St+1,u + 5t+1,u) — Ft+1,u + Pt+1,u Ct+1u — Cti1u

[Et[ (Ses1 + 5t+1)] = [Et[ (Ses1 + 5t+1)];

0 0 0 0
Ht '(St+1,d + 5t+1,d) = Ft+1,d + Pt+1,d €t+1,d — €414
1 1 1 1
Ot '(St+1,d + 5t+1,d) = Ft+1,d + Pt+1,d €t+1,d — €ti1.d
0 1 _
pt+1,u + pt+1,u - 1'

0 1 _
Pes1d T Prata = 1.



Risk-free means that S;,1, + 0¢41,, is constant across all n € (£7). Be-

cause of the market clearing condition we only need to write the
flow budget constraints for agent 0:

1 ¢?+1(pt+1,u) N l ¢?+1(pt+1,d) B 1 ¢g+1(pt+1,u)

¢g+1(pt+1,d)
¢g (P¢)

0
t+1,u

1
2 ¢(t)(pt) 2 ¢?(Pt) 2 ¢%(Pt) ’ E
07 (Ses1,u(Pes1,0) + O 1) = Foop u(Pestn) + Pty €estu — &
02 (Se+1,d(Per1,a) + Oes1,d) = Fort a(Ore1d) + Prstd €ertd = €
P?+1,u + P%+1,u =1,
P?+1,d + Pg+1,d =1.

This is a system of 5 equations with unknowns

0 1 0 1 0
Pti1uw Pe+1uw Pt+1,d> Pe+1,d> h



If we complete the market (say, with the risky security) the system
becomes

Bs1(Per1)  Bh1(Pery) BL1(Perd)  Dr1(Prera)
¢? (Pt) ) ¢z} (Pt) ’ ¢? (Pt) ) (bg (Pt)
P?+1,u T P%+1,u =1,

Perid + Prsrg = 1-

By using our method we extend the Basac-Cuoco (1998) economy
to include agents with power utilities. In our formulation the
market price of risk is

)

0 0 0 0 0 0
1 ¢t+1,u 1 ¢t+1,d 1 Ft+1,u +8t+1,u 1 Ft+1,d+8t+1,d
>~ 35— |X|3 5 + = 5 -1
¢t 2 ¢t 2 Ft 2 Ft
0 0 0 0
Ft+1,u +8t+1,u . l Ft+1,d+gt+1,d

1
2 F:? 2 F?
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Basac - Cuoco (1998) II: only the risky security is traded
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e Cuoco-He (2001): Two assets on a lattice
o itis possible to stack all the first-order conditions (**) of all the nodes

into one large system and then to substitute into this system the

recursions for F; and S;. This huge system can conceivably be solved
simultaneously in one fell swoop. We call this approach the “global
method,” as opposed to the recursive method, for the solution of the

forward-backward system.
o In their paper of 2001, Cuoco and He write and solve a large system of

that type.
o In their numerical Example #6.2 (Page 289), they consider a two-

period t=0,1,2 economy with a tree that is not binomial and is better

called a lattice, and with two securities:
» along-term bond (maturing at time 2) and the equity claim.

o The node of time 0 has three spokes. At time 1, one node has two
spokes and the other two have three spokes.

o The initial condition imposed is that the net financial wealth of both

groups be equal to zero.
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Financial Wealth of Investor 2

The intersection of the line of points with the x-axis gives the price
of the bond corresponding to the solution of Cuoco and He (2001),

Page 291.




e Heaton-Lucas (1996)
o Model calibrated to real U.S. economy, including idiosyncratic labor

shocks observed on panel data
o Two groups of households differ only in the allocation of output to

individual labor income; both have CRRA=1.5

o They have identical risk aversions and discount rates. Because of that,
output is only a scale variable, which can be factored out

o Three exogenous state variables describe the exogenous aspects of
the economy at any given time:
» the realized rate of growth of output
» the share of output paid out as dividend, vs. labor
» the share of labor income that is paid to Group 1, vs. Group 2

o These follow an eight-state Markov chain, which is calibrated to U.S.
data

o One endogenous state variable defined as p; above.



t =T — 1 (next period consumption):

next period consumption
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t =T — 7 (next period consumption):

next period consumptions for agent2

1.0 F
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t =T — 1 (risky security):

price of the risky security
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t =T — 7 (risky security):

price of the risky security
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t=T-1 (bond):

price of the bond
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t=T-7 (bond):

price of the bond
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t =T — 1 (investment):
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exiting wealth
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t=T-1 (risk premium):

risk premiums in state 1

0.15

0.10 f

0.05

0.00

[ / ———
0.0 0.2 0.4 0.6 0.8 1.0

proportion of consumption for agent 2: w




t =T — 7 (risk-premiums):

risk premiums in state 1
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t =T — 7 (risk-premiums):

risk premiums in state 1
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t =T -1 (portfolio):
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t = T — 7 (multiple solutions):
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One risky security and a bond on a trinomial tree (incomplete

market):

.0085 93.1588 96.4194 99.7941 103.287 106.902 110.643 114516 118.524 122.672 126966 131.41 136.0(

NAXAXAXLXAX XXX XX

91.6016 94.8076 98.1259 101.56 105.115 108.794 112.602 116.543 120.622 124.844 129.213

NAXAXAXLXAX XS XLXLT

93.2229 96.4857 99.8627 103.358 106975 110.72 114.595 118.606 122.757

NAXAXA XS XL

94,8728 98.1934 101.63 105.187 108.869 112.679 116.623

NAXAX XS XL

96.552 99.9313 103.429 107.049 110.796

NAXAXAT

98.2609 101.7 105.26

N

100.



... Or on a binomial tree (complete market):

90.0085 96.4194 103.287 110.643 118.524 126.966 136.009
N7 XN XN T XN T XN TN T
91.6016 98.1259 105.115 112.602 120.622 129.213
N7 XN AT XN T XN TR T
93.2229 99.8627 106.975 114.595 122.757
N7 XN T XN T XN T
94.8728 101.63 108.869 116.623
N7 N7 XN T
96.552 103.429 110.796
N7 N T
98.2609 105.26

N7

100.



One of the investors is endowed with the stream of stochastic divi-

dends (shown on the tree) while the second, more risk averse, inves-
tor has no endowment other than his initial wealth.

T=6,N=2,Kf=3,P1=P2=P3=%

1-yi

. _ C .
Ue)=p"™" =, i=1,2,y1=1, 2 =5.

Yi



shares in the bond
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shares in the risky security
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Back to Heaton-Lucas: the same 8-state MC, same CRRA = 1.5, ex-
cept that now the transition probabilities for each state are re-

placed by the steady-state probabilities. From the point of view of
calculating the equilibrium the states are now indistinguishable. As
a result one has only one system per iteration.
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 when the tree is really small the global method, when it converges
to a solution, provides a single-point solution much faster than
does the recursive method

e It should be pointed out, however, that the recursive method
delivers a whole set of points as in the figures above.

e In principle the recursive method can be used on a very large tree



e For the case in which the tree is binomial, we emphasize very
strongly that, even when the exogenous state variables are
Markovian, the global approach does not permit the use of a
recombining tree.

o This is because a recombining node would have a unique value of the
exogenous state variables but would correspond to two different
values of the endogenous state variables, depending on which node

the process is coming from.
o Avoiding the path-dependence aspect is of a great advantage for the

recursive method.
 The complexity of the problem does not increase significantly by

increasing the number of assets



Categorize cases in which incomplete markets can and cannot

explain asset-pricing puzzles
Transactions costs

Recursive utility and default risk
Large population

Production economies
Monetary policy

International finance
Continuous time



