To hold a convex body by a frame

Hiroshi Maehara

Ryukyu University and RIED Tokai University

- Is it possible to hold a cube by a circular handcuff?
- How about for other convex bodies?
- By a flex-cuff or handcuffs of other shapes?

- A frame is the (rigid) boundary curve of a convex disk in a plane.
- A frame F is said to **hold** a convex body K if (1) F is **attached** to K, that is, $F \cap int(K) = \emptyset, \ conv(F) \cap int(K) \neq \emptyset, \ \text{and}$ (2) F cannot **slip out** of K by a rigid motion

with keeping $F \cap int(K) = \emptyset$.

1. Circular frame

A convex body is called **circle-free** if no **circle** can hold it.

- Every ball is circle-free.
- A cube and a regular tetrahedron are not circlefree.

Example. Every circular cone is circle-free.

Theorem (T. Zamfirescu 1995)

The set of circle-free convex bodies in \mathbb{R}^3 is a nowhere dense subset of the set of all convex bodies in \mathbb{R}^3 with Housdorff metric.

Thus, circle-free convex bodies are rare.

Theorem (M 2011)

For every planar compact convex set X and a ball \mathbf{B} in \mathbb{R}^3 , the convex body $X + \mathbf{B}$ (Minkowski sum) is circle-free.

$$+ \ominus = \bigcirc$$

Problem. Is it true that for every circle-free convex body K, the set $K+\mathbf{B}$ is also circle-free?

Symmetrization Lemma. Let Γ_0 be a holding circle of a convex polyhedron such that

- (1) $conv(\Gamma_0)$ divides its vertex set into U, V,
- (2) both U and V are symmetric to themselves w.r.t. a fixed plane H.

Then there is a continuous family of holding circles Γ_t (0 $\leq t \leq$ 1) such that

 $diam(\Gamma_t) \leq diam(\Gamma_0), \ \Gamma_t \cap H = \Gamma_0 \cap H,$

and Γ_1 is symmetric to itself w.r.t. H.

2. Holding circles of Platonic solids

Theorem (Itoh, Tanoue, Zamfirescu 2006)

A circle of diameter d can hold a regular tetrahedron of unit edge if and only if

$$1/\sqrt{2} \le d < \phi_t \approx 0.896$$

where ϕ_t is the min value of $\frac{2(x^2-x+1)}{\sqrt{3x^2-4x+4}}$.

Hyperboloidal Restriction.

If the plane of a holding circle cuts the edges on a hyperboloid of revolution, the order of intersections of the circle and the edges is restricted by the alternation of inside-outside.

Lemma. If a circle Γ holds a cube, then $conv(\Gamma)$ cuts all faces of the cube.

Theorem (M 2010).

A circle Γ of diameter d can hold a unit cube if and only if $\sqrt{2} \le d < \phi_c \approx 1.535$, where ϕ_c is the min value of $\frac{\sqrt{2}(x^2+2)}{\sqrt{x^2+2x+3}}$.

Proof is by SL, HR, Lemma, and computations.

For a regular octahedron, the following holds.

Lemma. If Γ holds a regular octahedron, then $conv(\Gamma)$ separates its two faces.

Using the lemma, we can prove the following.

Theorem (M 2010)

A circle of diameter d can hold a regular octahedron of unit edge if and only if

$$1 \le d < \phi_o \approx 1.1066$$
,

where ϕ_o is the min value of $\frac{2(x^2+1)}{\sqrt{3x^2+2x+3}}$.

Y. Tanoue got the same result independently.

Lemma.

If a circle Γ holds a regular icosahedron I, then $conv(\Gamma)$ divides the graph of I into one of the following pairs:

Corresponding to (1), (2), (3), holding circles are called type 1, type 2, type 3, respectively.

To get a type 3 circle, rotate the circum-circle Γ of ABCDE around \overleftrightarrow{BE} so that $conv(\Gamma)$ goes above A, push down the circle a bit, squeeze it.

Theorem.

A regular icosahedron of unit edge has three types holding circles. The min diameter of type 1 circle is $\sqrt{3}\approx 1.7320$, and the min diameter of type 2 circle is $\tau:=\frac{1+\sqrt{5}}{2}\approx 1.6180$.

There is a holding circle that can vary between types 2 and 3 by going over a vertex. The min diameter of such circle is $d_* \approx 1.6816$, the min value of $\frac{\tau^2 + (1-x)^2}{\sqrt{\tau^2 + (1-x)^2 - (x/2)^2}}$.

Theorem.

The circum-circle of a regular pentagon of unit side (diameter $2\sqrt{\tau/\sqrt{5}}\approx 1.7013$) cannot hold a regular icosahedron of unit edge.

Since $\tau < 1.7013 < \sqrt{3}$, the set of diameters of all holding circles (**DHC**) of a regular icosahedron has 2 connected components.

Theorem.

A regular dodecahedron of unit edge can be held by a circle of diameter $au^2 \approx 2.6180$ in two different ways, where $au = \frac{1+\sqrt{5}}{2}$.

There are holding circles Γ of a dodecahedron such that $conv(\Gamma)$ divides the vertex set unevenly.

Two holding circles of a regular dodecahedron.

Problem. Find all types of circles that hold a regular dodecahedron. Determine DHC for a regular icosahedron/dodecahedron of unit edge.

Problem. Is there a convex body whose DHC has more than 2 connected components?

3. The case of regular pyramids

ullet For a regular pyramid, define its **slope** ρ by

$$\rho := \frac{\text{height}}{\text{circum-radius of the base}}$$

Theorem (M 2011)

Every regular pyramid with $\rho \geq 1$ can be held by a circle.

Proof (Outline).

Slide the circle slightly in the direction \overrightarrow{PD} , and then squeeze its radius. The resulting circle cannot slip out of the pyramid.

Theorem (M 2011)

For every $0 < \varepsilon < 1$, there is a circle-free regular pyramid with $\rho = 1 - \varepsilon$.

If $m>2\pi/\varepsilon^2$, then a regular pyramid with base regular 4m-gon and $\rho=1-\varepsilon$ is circle-free.

Theorem (Tanoue 2009, M 2011)

A regular pyramid with equilateral triangular base can be held by a circle if and only if

$$\rho > \sqrt{(3\sqrt{17} - 5)/32} \approx 0.4799.$$

Y. Tanoue proved the if part.

Theorem (M 2011)

A regular pyramid with square base can be held by a circle if and only if

$$\rho > \sqrt{(\sqrt{33} - 3)/4} \approx 0.828.$$

The Great Pyramid of Giza has base-edge 230m, height 140m. Since $140\sqrt{2}/230\approx 0.860>0.828$, it can be held by a circle.

4. Strings and frames of other shapes

Theorem (A. Fruchard 2009)

A loop of string winding on a convex body can slip out of the convex body. (Hence a flex-cuff cannot hold a convex body.)

Proof by Fruchard (For convex polyhedron P): By contradiction. Let L be the shortest loop that cannot slip out of P. Then, L draws a geodesic on ∂P , and never passes through a vertex of P. It is possible to develop (unfold) ∂P on the plane so that the track of L becomes a line-segment between two parallel edges. Slide this line-segment between the parallel edges. This corresponds to a motion of L on ∂P . Then, L eventually hits a vertex, a contradiction.

Theorem (Bárány, Tokushige, M. 2011) No triangular frame can hold a convex body.

Proof.

 H_a, H_b, H_c enclose either a triangular cone or a triangular prism. Hence the convex body can slip out.

 A frame F is said to fix a convex body K if F holds K in such a way that when K is fixed, F is confined in a fixed plane.

Theorem (Bárány, Tokushige, M 2011) Every non-triangular frame can fix some tetrahedron.