
P vs. NP

Moshe Y. Vardi

Rice University



An Outstanding Open Problem

Does P = NP?

• The major open problem in computer science

• A major open problem in mathematics

– A Clay Institute Millennium Problem
– Million dollar prize!

• On August 6, 2010, Vinay Deolalikar announced a proof (100-page
manuscript) that P 6= NP .

What is this about? It is about computational complexity – how hard it
is to solve computational problems.

1



Rally To Restore Sanity, Washington, DC, October 2010

2



Computational Problems

Example: Graph – G = (V,E)

• V – set of nodes
• E – set of edges

Two notions:

• Hamiltonian Cycle: a cycle that visits every node exactly once.
• Eulerian Cycle: a cycle that visits every edge exactly once.

Question: How hard it is to find a Hamiltonian cycle? Eulerian cycle?

3



Figure 1: The Bridges of Königsburg

4



Figure 2: The Graph of The Bridges of Königsburg

5



Figure 3: Hamiltonian Cycle

6



Computational Complexity

Measuring complexity: How many (Turing machine) operations does it
take to solve a problem of size n?

• Size of (V,E): number of nodes plus number of edges.

Complexity Class P : problems that can be solved in polynomial time
– nc for a fixed c

Examples:

• Is a number even?
• Is a number square?
• Does a graph have an Eulerian cycle?

What about the Hamiltonian Cycle Problem?

7



Hamiltonian Cycle

• Naive Algorithm: Exhaustive search – run time is n! operations

• “Smart” Algorithm: Dynamic programming – run time is 2n operations

Note: The universe is much younger than 2200 Planck time units!

Fundamental Question: Can we do better?

• Is HamiltonianCycle in P?

8



Checking Is Easy!

Observation: Checking if a given cycle is a Hamiltonian cycle of a
graph G = (V,E) is easy!

Complexity Class NP : problems where solutions can be checked in
polynomial time.

Examples:

• HamiltonianCycle
• Factoring numbers

Significance: Tens of thousands of optimization problems are in NP!!!

• CAD, flight scheduling, chip layout, protein folding, . . .

9



P vs. NP

• P : efficient discovery of solutions
• NP : efficient checking of solutions

The Big Question: Is P = NP or P 6= NP?

• Is checking really easier than discovering?

Intuitive Answer: Of course, checking is easier than discovering, so
P 6= NP !!!

• Metaphor: finding a needle in a haystack
• Metaphor: Sudoku
• Metaphor: mathematical proofs

Alas: We do not know how to prove that P 6= NP .

10



P 6= NP

Consequences:

• Cannot solve efficiently numerous important problems
• RSA encryption may be safe.

Question: Why is it so important to prove P 6= NP , if that is what is
commonly believed?

Answer:

• If we cannot prove it, we do not really understand it.
• May be P = NP and the “enemy” proved it and broke RSA!

11



P = NP

S. Aaronson, MIT: “If P = NP , then the world would be a profoundly
different place than we usually assume it to be. There would be no special
value in ‘creative leaps,’ no fundamental gap between solving a problem
and recognizing the solution once its found. Everyone who could appreciate
a symphony would be Mozart; everyone who could follow a step-by-step
argument would be Gauss.”

Consequences:

• Can solve efficiently numerous important problems.
• RSA encryption is not safe.

Question: Is it really possible that P = NP?

Answer: Yes! It’d require discovering a very clever algorithm, but it
took 40 years to prove that LinearProgramming is in P .

12



Sharpening The Problem

NP -Complete Problems: hardest problems is NP

• HamilatonianCycle is NP -complete!

Corollary: P = NP if and only if HamiltonianCycle is in P

There are thousands of NP -complete problems. To resolve the P = NP
question, it’d suffice to prove that one of them is or is not in P .

13



History

• 1950-60s: Futile effort to show hardness of search problems.
• Stephen Cook, 1971: Boolean Satisfiability is NP-complete.
• Richard Karp, 1972: 20 additional NP-complete problems– 0-1 Integer

Programming, Clique, Set Packing, Vertex Cover, Set Covering,
Hamiltonian Cycle, Graph Coloring, Exact Cover, Hitting Set, Steiner
Tree, Knapsack, Job Scheduling, ...
– All NP-complete problems are polynomially equivalent!

• Leonid Levin, 1973 (independently): Six NP-complete problems
• M. Garey and D. Johnson, 1979: “Computers and Intractability: A Guide

to NP-Completeness” - hundreds of NP-complete problems.
• Clay Institute, 2000: $1M Award!

14



Terminology

Terminological Chaos: The standard terminology did not converge until
1974.

Knuth, 1974, “A terminological Proposal”

• Competing terms: arduous, bad, costly, difficult, exorbitant, exparent,
formidable, heavy, Herculean, impractical, interminable, intractable,
obdurate, perarduous, polychronious, prodigious, Sisyphean, tricky.

• Winning terms: NP-hard and NP-complete.

15



Logic and Complexity

Richard Lipton, Blog, Aug. 8, 2010:

“At the highest level he is using the characterization of polynomial
time via finite-model theory. His proof uses the beautiful result of
Moshe Vardi (1982) and Neil Immerman (1986).”

Theorem: On ordered structures, a relation is defined by a first-order
formula plus the Least Fixed Point (LFP) operator if and only if it is
computable in polynomial time.

Paper: “The complexity of relational query languages”, 1982 > 1100
citations.

16



Terminology:

• Relation: set of tuples of elements, e.g., < is set of pairs

• Model Theory: logical theory of mathematical structures – branch of
mathematical logic

• Finite-Model Theory: logical theory of finite mathematical structures –
between mathematical logic and computer science

17



The Language of Mathematics

G. Frege, Begriffsschrift, 1879: a universal mathematical language – first-
order logic

• Objects, e.g., numbers
• Predicates (relationships), e.g., 2 < 3
• Operations (functions), e.g., 2 + 3
• Boolean operations: “and” (∧), “or” (∨), “not” (¬), “implies” (→)
• Quantifiers: “for all” (∀x), “there exists” (∃x)

Back to Aristotle:

• “All men are mortal”
• “For all x, if x is a man, then x is mortal”
• (∀x)(Man(x)→Mortal(x))

18



First-Order Logic on Graphs

Syntax:

• Variables: x, y, z, . . . (range over nodes)

• Atomic formulas: E(x, y), x = y

• Formulas: Atomic Formulas + Boolean Connectives + First-Order
Quantifiers

19



Examples:

• ϕ1: “node x has at least two distinct neighbors”

(∃y)(∃z)(¬(y = z) ∧ E(x, y) ∧ E(x, z))

• ϕ2: “nodes x and y are connected by a path of length two”:

(∃z)(E(x, z) ∧ E(z, y))

Formulas as Queries:

• ϕ1 “computes” the set of nodes with at least two distinct neighbors.
• ϕ2 “computes” the set of pairs of nodes connected by a path of length

two.

20



Logic and Complexity

Theorem: [Immerman-V.]: Polynomial time computability is equivalent to
computability by iterating positive first-order queries.

Significance:

• Machine-free characterization of P

– Note: No Turing machines, no polynomial, no time!

• Normal form for P

21



Positivity

• Positive: ϕ2: “nodes x and y are connected by a path of length two”:

(∃z)(E(x, z) ∧ E(z, y))

• Non-Positive: ϕ3: “nodes x and y are connected by an incomplete
triangle”:

(∃z)(E(x, y) ∧ E(x, z) ∧ ¬E(y, z))

Significance of Positivity: Iteration yields an increasing sequence of
relations, guaranteeing convergence.

22



Example: 2-Colorability

Graph Coloring:

• Graph – G = (V,E)
• k-coloring: h : V → {1, . . . , k}
• Nonmonocromacity: h(u) 6= h(v)) for all (u, v) ∈ E
• k-Colorability: Does G have k-coloring?

Complexity:

• 3-Colorability is NP-complete.
• 2-Colorability is in PTIME.

23



Figure 4: 3-Coloring

24



2-Colorability

Fact: A graph is 2-colorable iff it has no cycle of odd length.

Example: Logical characterization of non-2-colorability

O(X, Y )← E(X, Y )

O(X, Y )← O(X, Z), E(Z,W ), E(W,Y )

Not2Colorable← O(X, X)

25



Another Connection between Logic and Complexity

Boolean Satisfiability (SAT); Given a Boolean expression in the form
of “and of ors”, is there a satisfying solution (an assignment of 0’s and 1’s
to the variables that makes the expression equal 1)?

Example:

(¬x1 ∨ x2 ∨ x3) ∧ (¬x2 ∨ ¬x3 ∨ x4) ∧ (x3 ∨ x1 ∨ x4)

Solution: x1 = 0, x2 = 0, x3 = 1, x4 = 1

Cook-Levin Theorem: SAT is NP-complete

26



A Physics Perspective

• Literal: Positive or negative variable – x1,¬x2

• Clause: Disjunction (or) of literals – (¬x1 ∨ x2 ∨ x3)

Energy State:

• Satisfied clause: 0
• Unsatisfied clause: 1
• Total energy: sum of clausal energies=number of unsatisfied clauses

Physics Perspective: Does expression have a zero-energy state?

• Formula satisfied ⇔ zero-energy state

27



k-SAT

k-SAT:

• Each clause contains precisely k literals.
• 2-SAT is in P .

(¬x1 ∨ x2) ∧ (¬x2 ∨ ¬x3) ∧ (x1 ∨ x4)

• k-SAT is NP -complete for k > 2.

28



Random k-SAT

Random k-SAT:

• Parameters:

– number of variables – n,
– number of clauses – m

• m/n=Number of clauses divided by number of variables: density –
fixed!

• Choose clauses at random, uniformly

• Limit: n, m→∞

29



Evolution of Random k-SAT

Intuition: Density analogous to temperature

• Low density: low energy state – high probability of satisfiability – limit= 1
• High density: high energy state – low probability of satisfiability –

limit= 0

Empirical Observation: Phase transition – limit probability drops from 1
to 0

• 2-SAT: phase transition at density 1 (also proved formally)
• 3-SAT: phase transition at density 4.26

1991-2010: Extensive research on statistical behavior of Random k-SAT

30



Phase Transition of 3-SAT

31



Essence of V.D.’s Proof

Crux: 9-SAT can not be in P !

• If 9-SAT is in P , then it can be expressed in FO+LFP, by the Immerman-
V. Theorem.

• But, the FO+LFP normal form is inconsistent with what is known about
statistical behavior of random 9-SAT.

32



Reaction to Proof Announcement

A huge buzz!!!

Why?

• People announce solutions of the problem all the time.
• Every few months paper posted on arXiv.org.

But:

• V.D. is a Principal Research Scientist at HP.
• Stephen Cook (founding figure in complexity theory): “This appears to

be a relatively serious claim”
• Nice connection of complexity, logic, and physics!
• Richard Lipton (senior complexity theorist and influential blogger): Blog

item on August 8, 2010, slashdotted

33



Proof Checking at The Internet Age

“Ten Days of Fame”: Proof discredited in ten days!

• Aug. 6: Manuscript sent to 22 people and put on web page
• Aug. 7: First blog post [Greg Baker]
• Aug. 8: Second blog post [Richard Lipton], Slashdot

– extensive commentary
• Aug. 9: Wikipedia article about V.D. (deleted later)
• Aug. 10: Wiki for technical discussion established

– hundreds of edits
– Fields medalists involved

• Aug. 15: CACM blogpost by Lipton
• Aug.16: New York Times article

34



The Flaw

A major problem: V.D.’s proof does not seem to distinguish between
intractable and tractable cases of k-SAT.

Cause: Misuse of the Immerman-V. Theorem.

35



A Tractable Fragment of SAT

Affine Boolean Satisfiability (Affine SAT): Given a Boolean expression
in the form of “and of xors”, is there a satisfying solution (an assignment
of 0’s and 1’s to the variables that makes the expression equal 1)?

Example:

(¬x1 ⊕ x2 ⊕ x3) ∧ (¬x2 ⊕ ¬x3 ⊕ x4) ∧ (x3 ⊕ x1 ⊕ x4)

In essence: Linear equations modulo 2

• Solve using Gaussian elimination

But: Random k-SAT and Random Affine k-SAT are quite similar
statistically!

36



Revision at the Internet Age

• First draft, Aug. 6
• Second draft Aug. 9–11
• Third draft, Aug. 11–17
• All drafts removed after Aug 17

Consensus: The P vs. NP problem withstood another challenge and
remained wide open!

• Wikipedia: “However, the general consensus amongst theoretical
computer scientists is now that the attempted proof is not correct, nor
even a significant advancement in our understanding of the problem.”

37



No Concession!

From V.D.’s website:

“The preliminary version was meant to solicit feedback from a
few researchers as is customarily done. It illustrated the interplay
of principles from various areas, which was the major effort in
constructing the proof. I have fixed all the issues that were raised
about the preliminary version in a revised manuscript; clarified some
concepts; and obtained simpler proofs of several claims. Once I hear
back from the journal as part of due process, I will put up the final
version on this website.”

38



Reflection on P vs. NP

Old Cliché “What is the difference between theory and practice? In theory,
they are not that different, but in practice, they are quite different.”

P vs. NP in practice:

• P=NP: Conceivably, NP-complete problems can be solved in polynomial
time, but the polynomial is (10n)1000 – impractical!

• P6=NP: Conceivably, NP-complete problems can be solved by nlog log log n

operations – practical!

Conclusion: No guarantee that solving P vs. NP would yield practical
benefits.

39



Theory, Practice &Programming

• Theory: You know something, but it doesn’t work.

• Practice: Something works, but you don’t know why

• Progarmming: Combine theory and practice: Nothing works, and we
don’t know why!

40



Are NP-Complete Problems Really Hard?

• When I was a graduate student, SAT was a “scary” problem, not to be
touched with a 10-foot pole.
• Indeed, there are SAT instances with a few hundred variables that cannot

be solved by any extant SAT solver.
• But today’s SAT solvers, which enjoy wide industrial usage, routinely

solve real-life SAT instances with over one million variables!

Conclusion We need a richer and broader complexity theory, a theory that
would explain both the difficulty and the easiness of problems like SAT.

41


