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Hilbert spaces and Banach spaces: terminology

A Hilbert space is a vector space with an inner product which
turns it into a complete space.
The Hilbert space H is the unique (up to linear isometrical
isomorphism) separable infinite dimensional Hilbert space, e.g.
H = `2 or L2.
A Banach space is a normed complete space.

Question
How different may a general separable Banach space X be
from the Hilbert space `2?
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Hilbert spaces and Banach spaces

In general one may be interested either in the isometric
structure of a Banach space X , or in its isomorphic structure of
X . In the second case, one may replace the initial norm ‖.‖ by
an equivalent one ‖|.‖|, that is for which the identity map is an
isomorphism, or

∀x , c‖x‖ ≤ ‖|x‖| ≤ C‖x‖.

preserving the topology, as well as operator convergence. So
we shall also use the definition:

A Banach space (X , ‖.‖) is hilbertian if it is isomorphic to a
Hilbert space, or equivalently, if there is an equivalent norm
‖|.‖| so that (X , ‖|.‖|) is a Hilbert space.
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Hilbert spaces and Banach spaces

So our main question becomes: how different may a general
separable space X be from a hilbertian space?

In this talk all spaces are complete, and all Banach spaces are
separable, infinite dimensional.
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Classical spaces

I the sequences spaces c0 and `p (||x ||p = (
∑

n |xn|p)1/p).
I the function spaces Lp(µ) (which contain copies of `p),
I the function spaces C(K ) (which contain copies of c0).

The first non-classical space was due to B.S. Tsirelson in 1974.

Theorem (Tsirelson, 1974)
There exists a Banach space T which does not contain a copy
of c0 or `p,1 ≤ p < +∞.

The norm of T is defined by induction to ”force” a local
`1-behaviour on finite dimensional subspaces without implying
a global `1-behaviour.
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Exotic spaces

This paved the way for Gowers and Gowers-Maurey’s
constructions of exotic spaces which solved some open
questions in Banach space theory from the 1930s.

Theorem (Gowers-Maurey, 1993)
There exists a HI space GM, i.e. a space with few operators. In
particular GM is not isomorphic to its hyperplanes, not even to
its proper subspaces.

But the first example of space not isomorphic to its proper
subspaces was a different exotic space due to Gowers G.

Valentin Ferenczi, University of São Paulo On Gowers’ classification program



Exotic spaces

This paved the way for Gowers and Gowers-Maurey’s
constructions of exotic spaces which solved some open
questions in Banach space theory from the 1930s.

Theorem (Gowers-Maurey, 1993)
There exists a HI space GM, i.e. a space with few operators. In
particular GM is not isomorphic to its hyperplanes, not even to
its proper subspaces.

But the first example of space not isomorphic to its proper
subspaces was a different exotic space due to Gowers G.

Valentin Ferenczi, University of São Paulo On Gowers’ classification program



Exotic spaces

This paved the way for Gowers and Gowers-Maurey’s
constructions of exotic spaces which solved some open
questions in Banach space theory from the 1930s.

Theorem (Gowers-Maurey, 1993)
There exists a HI space GM, i.e. a space with few operators. In
particular GM is not isomorphic to its hyperplanes, not even to
its proper subspaces.

But the first example of space not isomorphic to its proper
subspaces was a different exotic space due to Gowers G.

Valentin Ferenczi, University of São Paulo On Gowers’ classification program



Gowers’ classification program

In his famous paper “An infinite Ramsey theorem and some
Banach space dichotomies”, Gowers proved Ramsey type
dichotomies in Banach spaces, and used these to prove that
the previously mentioned examples form an inevitable list of
spaces.

Theorem (Gowers, 2002)
Every Banach space contains a subspace:

I of the type of GM,
I of the type of Gu,
I of the type of T ,
I of the type of c0 and `p.
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Gowers’ classification program

Gowers observes that this list of 4 classes are defined by
properties which make the list inevitable in the following sense:

a) If X belongs to a class, then all its subspaces belong again
to the same class,

b) every space has a subspace in one of the classes,
c) the classes are very obviously disjoint,
d) belonging to a class gives a lot of information on the

operators that may be defined on the space.

Any list of classes satisfying a)b)c)d), obtained by Ramsey type
dichotomies, will be an answer to Gowers’ classification
program.
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Gowers’ classification program

Of course each class in such a list should be defined by one or
several hereditary properties, as in Gowers’ initial list of 4
classes, and the list could always be refined by using some
more properties, possibly dividing each classe in several
subclasses.

Question (Gowers’ classification program)
How to refine Gowers’ inevitable list of 4 classes? How to be
more precise about the properties defining the classes? How to
divide some classes in several subclasses?

In particular, according to Gowers’ program the last or ”nicest”
class should the class of spaces isomorphic to c0 or `p. This is
not the case in his list of 4 classes, as we shall explain later on.

Valentin Ferenczi, University of São Paulo On Gowers’ classification program
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Recent developments: complexity

I The idea of defining a list of specific structures, present as
a substructure of any given structure is of course not
original.

I Such ideas to consider simpler substructures present in
every structure may come from the feeling that the general
classification of the structures themselves is out of reach
(say here, the classification of separable Banach spaces
up to linear isomorphisms by some identifiable invariants is
much too complex).

I The theory of complexity of equivalence relations deals
with such questions of complexity of classification.
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Complexity of isomorphism: definition

Definition
Let R and S be two analytic equivalence relations on Polish
spaces E and F respectively. We say that E is Borel reducible
to F if there exists a Borel function f : X → Y such that

∀x , y ∈ E , xRy ⇔ f (x)Sf (y).

We obtain in this way a relative mesure of complexity of
(analytic) equivalence relations on Polish spaces.

Most natural relations of isomorphism of structures in analysis
belong to this setting.
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Complexity of isomorphism: definition

For example, the Banach-Stone theorem

K1 homeomorphic to K2 ⇔ C(K1) isometric to C(K2)

means in this setting that

homeomorphism of compact metric spaces

is Borel reducible to (i.e. not more complex than)

isometry of separable Banach spaces

Valentin Ferenczi, University of São Paulo On Gowers’ classification program



Complexity of linear isomorphism

Theorem (Ferenczi - Louveau - Rosendal, 2006)
The complexity of linear isomorphism between separable
Banach spaces is Emax , the maximum complexity among all
analytic equivalence relations. The same holds for

I linear isomorphic beembedding, complemented linear
isomorphic biembedding, Lipschitz isomorphism of
separable Banach spaces,

I uniform homeomorphism of complete metric spaces,
I isomorphism of Polish groups,
I ...

This may give support to the idea that classifying Banach
spaces in general is out of reach and that one should
concentrate on a ”simpler” classification such as Gowers’.
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Complexities of some equivalence relations
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Gowers’ list of 4 classes

Let us recall Gowers’ first list of (4) inevitable classes of spaces.

Theorem (Gowers, 2002)
Every Banach space contains a subspace:

I of the type of GM,
I of the type of Gu,
I of the type of T ,
I minimal, like c0, `p, but also others: S,T ∗...

A space X is minimal if every subspace of X has a further
subspace isomorphic to X . Such spaces may be thought of as
spaces which can not be ”simplified” by passing to a subspace,
”self-similar” spaces, ”fractal” spaces,...

Question
What is the correct dichotomy for minimality? And how may we
distinguish between c0, `p and other minimals?
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Tsirelson’s space

Let us take a look at the first ”non-classical” space, Tsirelson’s
space T .
Note that the shift S on T is an isomorphism, so T is
isomorphic to its hyperplanes. However

Fact
We have limn ‖Sn‖ = +∞.

This shows that T is different from c0 or `p, where S is
isometric. Even more

Fact
The space T is not uniformly isomorphic to its tail subspaces
(i.e. there is no K such that T is K -isomorphic to [ei , i ≥ n] for
all n, where (ei)i is the natural basis of T ).
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Note that the shift S on T is an isomorphism, so T is
isomorphic to its hyperplanes. However

Fact
We have limn ‖Sn‖ = +∞.

This shows that T is different from c0 or `p, where S is
isometric. Even more

Fact
No subspace Y of T embeds uniformly into its tail subspaces
(i.e. there is no K such that Y is K -isomorphic to a subspace of
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Let us call this property of a Banach space property (t).
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Let us take a look at the first ”non-classical” space, Tsirelson’s
space T .
Note that the shift S on T is an isomorphism, so T is
isomorphic to its hyperplanes. However

Fact
We have limn ‖Sn‖ = +∞.

This shows that T is different from c0 or `p, where S is
isometric. Even more

Fact
No subspace Y of T embeds uniformly into its tail subspaces
(i.e. there is no K such that Y is K -isomorphic to a subspace of
every tail subspace of T ).

Let us call this property of a Banach space property (t).
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Property (t)

Definition
A space X with a basis has property (t) if no subspace of X
embeds uniformly into the tail subspaces of X .
Note that

I property (t) is hereditary,
I c0 or `p do not satisfy (t), therefore, property (t) spaces do

not contain copies of c0 or `p
I minimal spaces do not satisfy (t): therefore, property (t)

spaces do not contain minimal subspaces.
However

Fact
Is it not true that every Banach space contains a minimal
subspace or a subspace with property (t).
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Topological characterization of property (t)

So to obtain a dichotomy with minimality, we are looking for a
more general property than (t).

If X has a Schauder basis, let us consider b(X ), the set of
subspaces generated of sequences of vectors with rational
coordinates and successive supports on the basis.

This is easily seen as a Polish space.

On the other hand, classical results tell us that subspaces in
b(X ) capture enough of the general structure of the set of
subspaces of X .

So b(X ) will be the Polish space of (approximately all)
subspaces of X .
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Topological characterization of property (t)

Proposition (F. Godefroy 2011)
X has property (t) if and only if for any K ∈ N, for any Y ∈ b(X ),
the set

EmbK (Y ) = {Z ∈ b(X ) : Z contains a K− isomorphic copy of Y}

is nowhere dense.

Corollary
If X has property (t) then the set

Emb(Y ) = {Z ∈ b(X ) : Z contains an isomorphic copy of Y}

is meager (i.e. has topological measure 0) for all Y ∈ b(X ).
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The dichotomy for minimality: tightness

Theorem (3rd dichotomy, Ferenczi-Rosendal 2009)
Any Banach space contains a subspace X such that either

I X is minimal (i.e. embeds into all its subspaces), or
I no Y embeds in more than a meager set of subspaces of

X .

A space X with this last property will be said to be tight.

Property (t) is just a special kind of tightness. Other kinds exist.
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Refining Gowers’ list: 4 dichotomies

Unconditional basis ∗ 1st dichotomy ∗ Hered. indecomp.
⇑ (Gowers 96) ⇓

Tight by support ∗ 2nd dichotomy ∗ Quasi minimal
⇓ (Gowers 02) ⇑

Tight by range ∗ 4rd dichotomy ∗ Seq. minimal
⇓ (F.R. 09) ⇑

Tight ∗ 3rd dichotomy ∗ Minimal
(F.R. 09)
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Refining Gowers’ list: 4+2=6 dichotomies

st. as. `p,1 ≤ p < +∞ ∗ Tcaciuc ∗ Unif. inhomogeneous
⇓ (Tcaciuc 07) ⇑

Unconditional basis ∗ 1st dichotomy ∗ Hered. indecomp.
⇑ ⇓

Tight by support ∗ 2nd dichotomy ∗ Quasi minimal
⇓ ⇑

Tight by range ∗ 4th dichotomy ∗ Seq. minimal
⇓ ⇑

Tight ∗ 3rd dichotomy ∗ Minimal
⇑ ⇓

Property (t) ∗ 5th dichotomy ∗ Loc. minimal
(F.R. 09)
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Refining Gowers’ list: 4+2=6 dichotomies

st. as. `p,1 ≤ p < +∞ ∗ Tcaciuc ∗ Unif. inhomogeneous
⇓ ⇑

Unconditional basis ∗ 1st dichotomy ∗ Hered. indecomp.
⇑ ⇓

Tight by support ∗ 2nd dichotomie ∗ Quasi minimal
⇓ ⇑

Tight by range ∗ 4th dichotomy ∗ Seq. minimal
⇓ ⇑

Tight ∗ 3rd dichotomie ∗ Minimal
⇑ ⇓

Property (t) ∗ 5th dichotomie ∗ Loc. minimal

Combining the 6 dichotomies one should obtain 26 = 64
classes of Banach spaces, but because of the different
relations between the properties, one obtains 19 classes.
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Refining Gowers’ list: 4+2=6 dichotomies

st. as. `p,1 ≤ p < +∞ ∗ Tcaciuc ∗ Unif. inhomogeneous
⇓ ⇑

Unconditional basis ∗ 1st dichotomy ∗ Hered. indecomp.
⇑ ⇓

Tight by support ∗ 2nd dichotomie ∗ Quasi minimal
⇓ ⇑

Tight by range ∗ 4th dichotomy ∗ Seq. minimal
⇓ ⇑

Tight ∗ 3rd dichotomie ∗ Minimal
⇑ ⇓

Property (t) ∗ 5th dichotomie ∗ Loc. minimal

More precisely, one obtains 6 classes from the first 4
dichotomies, and 19 sub-classes by also using the two others.
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Refining Gowers’ list: a list of 6 classes

Theorem (Ferenczi, Rosendal, 2009)
Every Banach space of infinite dimension contains a subspace
of one of the following 6 types:

Type Properties Examples
(1) HI, tight by range Gowers, 95

(F.R.)
(2) HI, tight, seq. minimal Gowers-Maurey’, 11

(F. Schlumprecht)
(3) tight by support Gowers, 94
(4) unc. basis, quasi min., Argyros,Manoussakis,

tight by range Pelczar,12
(5) unc. basis, tight, seq. minimal Tsirelson, 74
(6) unc. basis, minimal c0, `p
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Refining Gowers’ list: a list of 19 subclasses

Type Properties Examples
(1) HI, tight by range 1a: ?, 1b; Gas
(2) HI, tight, seq. minimal 2a: ?, 2b: GM ′

(3) tight by 3a:?, 3b: G∗,
support 3c: Xu, 3d: X ∗u

(4) unc. basis, quasi min., 1a:?, 1b: AMP
tight by range 1c:?, 1d:?

(5c) unc. basis, seq. minimal, and
- prop. (t), st. as. `p, 1 ≤ p <∞, T

(5abd) - other properties ?
(6a) minimal, unif. inhomogeneous S
(6b) minimal, reflexive, st. as. `∞ T ∗

(6c) isomorphic to c0 or `p, 1 ≤ p <∞ c0, `p
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