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Graphs & moves

Graph algebras
Any countable graph E = (E®, E1) defines a C*-algebra C*(E)
given as a universal C*-algebra by projections {p, : v € E°} and

partial isometries {s. : e € E'} subject to the Cuntz-Krieger
relations:

Q@ pypw =0 when v #w

Q (sesi)(srsf) =0 when e # f

Q Sise = Pr(e) and Sesg < ps(e)

Q pv =D (e)=y Sese for every v with 0 < [{e | s(e) = v}| < cc.

oO——> e ® —>0O
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Graph algebra need-to-know

There is a huge body of knowledge about graph algebras. Of prime
importance here is

Observation

2(p) =pv vz(se) = zse
induces a gauge action T — Aut(C*(E))

Theorem
Gauge invariant ideals are induced by hereditary and saturated
sets of vertices V:

o s(fe)eV=r(e)eV
o r(s7}(v)) C V = [v € V orv is singular ()]

and when there are no breaking vertices, all arise this way.




Graphs & moves

The gauge simple case

Theorem

If a graph C*-algebra has no non-trivial gauge invariant ideals, it is
either

© an AF algebra;
© a Kirchberg algebra; or
@ C(T)® K(H) for some Hilbert space H.

It is easy to tell from the graph which case occurs. The first case
occurs when the graph has no cycles; the second when one vertex
supports several cycles.
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The unital case

Observation

C*(E) is unital <= Ey is finite

In this case we get a finite presentation, e.g.

0 000 00 0 0
© 1 10 . |11 s |oo 0
AE=10 10 0] PE=|1 0| =0 o
0 010 01 0 0

oO——> e ® —— O
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Moves

Remove a regular source, as

*—> @ 0O ~> @ o
S — )

Reduce a configuration with a transitional regular vertex, as

/X — X\
[ ] *’——=0 ~~> @ [ ]
~ 7 ~—_

or
O——%——>@0 ~~» 0O—— @

A
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Moves

Insplit at regular vertex

[ ] O ~~» @ —> %k ——>0
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Outsplit at any vertex (at most one group of edges infinite)

[ ] @ ——> %k

i

[} e —— %k
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Definition
E ~c+ F when C*(E)@ K~ C*(F) @ K

Definition

E ~, F when there is a finite sequence of moves of type

().(R).(0).(1),

and their inverses, leading from E to F.
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Proposition

Our goal will be to try to reverse this implication.
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Observation
dim C*(E) < oo precisely when E is a finite graph with no cycles

Let #sink(E) denote the number of sinks in the graph E.

Theorem
Assume that E, F are both finite graphs with no cycles. The
following are equivalent

QO E~c F
@ E ~p, F via moves (O) and (R)
o #sink(E) - #sink(F)




Amplified graphs

Emit infinitely to any vertex reachable by a path starting with an
edge with infinitely many parallels:

O——0 ——>0 ~~ O@.

Lemma (E-Ruiz-Sgrensen)
Move (T) is generated by moves (R), (1), and (O).
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Theorem (E-Ruiz-Sgrensen)

When E and F both have finitely many vertices and both have the
property that if there is an edge between two vertices, there are
infinitely many (i.e., they are amplified), then

Er~c- F=Er~pF

through move (T) only
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Let E be a finite graph with no sinks or sources. Then
Xe ={(en) € (El)Z | r(en) = s(ent1)}

is a shift space; in fact an SFT.
We say that two shift spaces X and Y are flow equivalent and write
X ~fre Y when their suspension flows

SX =X @R/{(x,t) ~ (o(x), t + 1))

are homeomorphic in a way preserving the direction of the flow
lines. The relevance of this notion comes from

Theorem (Parry-Sullivan)

When E, F are both finite graphs with no sinks or sources, then

XENFEXF<:>ENmF
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Theorem (Franks)

Let E and F be strongly connected finite graphs, not a single
cycle. The following are equivalent
Q@ Z"/im(l — Ag) ~Z™/im(l — Af) and
det(/ — Ag) = det(/ — AF)
Q Xe ~re Xr
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O, versus O,
Consider the two graphs E, F given by

(L L) 0)

O g7

Z)im(l — Ag) = 0=2Z%/im(l — AF)

We have

but
det(/ — Ag) = =1 # 1 =det(/ — Af).

Theorem (Rgrdam)
C*(E)® K ~ C*(F) ® K

Hence E ~¢cx F but E &, F.
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Move (C)

“Cuntz splice” on a vertex supporting two cycles

(b O )0

L] *x > @ * [ J [ J
~— N~ Y =

Theorem (Rgrdam, Cuntz)

Let E, F be strongly connected finite graphs, not a single cycle.
When E ~c« F, then Z" /(I — Ag)Z" ~ 7™ /(] — Ag)Z™. When
Z" /(I — Ag)Z" ~ 7™ /(] — Ag)Z™, then E ~p F through moves
(R), (1), (0), and (C).

Definition

E ~p F when there is a finite sequence of moves of type

(5).(R).(0).(1).(C)

and their inverses, leading from E to F.
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Classification
Filtered K-theory

Let 2 be a C*-algebra having only finitely many ideals. The
collection of all sequences

Ko(3/3) —— Ko(R/T) — Ko(R/3J)

| |

Ki(R/3) =—— Ki(R/J) =— K1(3/7)

with J<1J <R <% gauge invariant ideals is called the filtered
K-theory of 2 and denoted FK(2l). Equipping all Ko-groups with
order we arrive at the ordered, filtered K-theory FK™ ().




Classification

Suppose C[X] is a family of C*-algebras with real rank zero and
primitive ideal space X, so that it is known that (K.(—), Ki(—)+)
is a complete invariant for all simple subquotients of € C.
When can we conclude that FK™(—) is a complete invariant for
the 2A's themselves?

Theorem (Elliott, Kirchberg-Phillips)

When C*(E) and C*(F) are simple, then

K.(C*(E)) = K.(C*(F)) < C*(E)® K ~ C*(F) ® K




Classification

Status quo
FK*(-) is known to be a complete invariant for graph
C*-algebras over X when
e |X| =2 [E-Tomforde]
@ |X| =3 and all K-groups are finitely generated
[E-Restorff-Ruiz]

and in roughly 2/3 of the possible cases with |[X| =4
[Arklint-Bentmann-E-Katsura-Kohler-Restorff-Ruiz]. No
counterexamples are known.
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Theorem (Sgrensen)

Let E and F be graphs so that C*(E) and C*(F) are unital and
gauge simple. The following are equivalent

Q K.(C*(E)) ~ K.(C*(F))
Q@ E~yF
Q@ E~c F
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Finite graphs
Gauge filtered K-theory

Let (A, ) be a C*-algebra with a gauge action, having only finitely
many gauge-invariant ideals. The collection of all sequences

Ko(3/3) —— Ko(8/T) — Ko(R/3)

T l

Ki(8/3) =— Ku(®/3) =— K1(3/3)

with J<J < 8 <2l gauge invariant ideals is called the gauge filtered
K-theory of 2 and denoted FK7(2l). Equipping all Ko-groups with
order we arrive at the ordered, gauge filtered K-theory FK7*(21).




Definition

The reduced ordered, gauge filtered K-theory FK*:med(%()
consists of

Ko(R) — Ko(R/3)

with J a maximal gauge invariant ideal inside a gauge prime ideal
R, along with
Ko(:jn) — Kg(j)

whenever J,J, are gauge prime with J = UJ,.
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Definition
The signature of 2 with finitely many gauge invariant ideals is a
map

7:Prim’(A) - Z
given by

—2 J/Jo is not simple
7(J) =4 -1 J/Jp is simple and AF
rank Ko(J/J0) — rank K1(J/30) otherwise

when Jp is the maximal gauge invariant proper ideal of J.
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Theorem (E-Ruiz-Sgrensen)

Let E and F be finite graphs. Then the following are equivalent
(1) E~mF

(2) E~e F

(3) FKYT(C*(E)) =~ FK™*(C*(F))

(4) 7 = ¢ and FK?H ’ed(C*(E)) ~ FK’V,—‘:-,red(C*(F))

Restorff proved (2) <= (3) <= (4) for E, F with no sinks and

sources, and every vertex reaching a vertex supporting two cycles
(condition (Il)).
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