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When is it model theory?

• Model theory focuses on a logical study of a class of
structures.

• The emphasis here is “the class" over the “logical".
• How can you tell if a class might be amenable to a model

theoretic study?
• Ultraproducts!
• The key observation is usually identifying a class of

structures closed under ultraproducts.
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Ultraproducts

• The discrete or set-theoretic ultraproduct has had many
applications in applied model theory; number theoretic
examples like the Ax-Kochen theorem from diophantine
geometry would be typical.

• Banach spaces via the positive bounded logic of Ward
Henson.

• Geometric group theory - asymptotic cones: Gromov, Van
den Dries, Wilkie and now studied by M. Luther.

• C*-algebras via normed ultraproducts
• The study of II1 factors via tracial ultraproducts going back

to Sakai (and Wright) and McDuff.
• I want to consider II1 factors as a case study.
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Tracial ultraproducts
• Suppose that A is a von Neumann algebra. We say that A

is tracial if it has a faithful, normal trace τ i.e. a positive
linear functional τ which is both faithful (τ(a∗a) = 0 implies
a = 0), normal (τ(1) = 1) and satisfies τ(xy) = τ(yx). We
write ‖a‖2 for the usual 2-norm induced by such a trace.

• If Ai for i ∈ I are tracial von Neumann algebras with traces
τi and U is an ultrafilter on I, one forms the tracial
ultraproduct as follows:

• Let

`∞(
∏
i∈I

Ai) = {ā ∈
∏
i∈I

Ai : for some M, ‖ai‖ ≤ M for all i ∈ I}

and
cU = {ā ∈ `∞(

∏
i∈I

Ai) : lim
i→U
‖ai‖2 = 0}

• The ultraproduct is then
∏
i∈I

Ai/U := `∞(
∏
i∈I

Ai)/cU .
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The only metric structures we need

• Fix a tracial von Neumann algebra i.e. a von Neumann
algebra A with a faithful, normal trace τ .

• Consider the structure where the underlying metric space
is the operator norm unit ball A1 = {x ∈ A : ‖x‖ ≤ 1} with
the metric given by the 2-norm, d(x , y) = ‖x − y‖2.

• The functions we highlight (those “in the language") are all
*-polynomials which map the operator norm unit ball of any
tracial von Neumann algebra back into itself. For instance,
x + y

2
, xy , x∗, λx for |λ| ≤ 1 etc.

• We also highlight the real and imaginary parts of the fixed
trace.

• One key element of the general theory of metric structures
is that all of these functions and relations are uniformly
continuous with respect to the 2-norm.
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The logic of metric structures

• Basic formulas will be of the form Re(τ(p(x̄))) and
Im(τ(p(x̄))) where p is one of the *-polynomials we fixed.

• Quantifier-free formulas will be of the form
f (ϕ1(x̄), . . . , ϕk (x̄)) where f : Rk → R is a continuous
function and ϕ1, . . . , ϕk are basic formulas.

• Arbitrary formulas are obtained by “quantifying" over the
variables using either sup or inf over the operator norm unit
ball.

• So an arbitrary formula has the form:

Q1
x1∈B1

Q2
x2∈B1

. . .Qk
xk∈B1

ϕ(x1, . . . , xn)

where each Qi is either sup or inf and ϕ is a quantifier-free
formula.
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Interpreting formulas

• If we consider any formula ϕ(x̄) and substitute elements ā
from a tracial von Neumann algebra A then ϕA(ā), ϕ
evaluated at ā, is a number.

• If a formula has no free variables we call it a sentence and
when we evaluate it in an algebra, a sentence is assigned
a number.

• The theory of an algebra A in continuous logic is the
function from sentences ϕ to numbers ϕA which assigns
their value in A; we write Th(A) for this function.

• It is equivalent to determine the set of sentences in a given
algebra which evaluate to 0. In fact, we can determine
Th(A) from knowing the zero set on positive sentences.
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from a tracial von Neumann algebra A then ϕA(ā), ϕ
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Elementary classes

We say that a class of structures K is elementary if there is a
set of sentences T such that A ∈ K iff ϕA = 0 for all ϕ ∈ T .

Theorem (FHS)

1. The class of all tracial von Neumann algebras is
elementary.

2. The class of all II1 factors is elementary.



Elementary classes

We say that a class of structures K is elementary if there is a
set of sentences T such that A ∈ K iff ϕA = 0 for all ϕ ∈ T .

Theorem (FHS)

1. The class of all tracial von Neumann algebras is
elementary.

2. The class of all II1 factors is elementary.



Elementary classes

We say that a class of structures K is elementary if there is a
set of sentences T such that A ∈ K iff ϕA = 0 for all ϕ ∈ T .

Theorem (FHS)

1. The class of all tracial von Neumann algebras is
elementary.

2. The class of all II1 factors is elementary.



Elementary maps

If A ⊆ B are two algebras then we say this embedding is
elementary if for all formulas ϕ(x̄) and ā ∈ A, ϕA(ā) = ϕB(ā).

Theorem (Łoś Theorem)
Suppose Ai are tracial von Neumann algebras for all i ∈ I, U is
an ultrafilter on I, ϕ(x̄) is a formula and ā ∈

∏
i∈I

Ai/U then

ϕ(ā) = lim
i→U

ϕAi (āi)

It follows that the diagonal embedding of A into AU is always
elementary; in particular, Th(A) = Th(AU).
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Property Γ

• If A is a II1 factor and U is a non-principal ultrafilter on N, a
relative commutant of A in AU , written A′ ∩ AU is

{B ∈ AU : B commutes with all C ∈ A}

• We say that A has property Γ if A′ ∩ AU 6= C.
• Having property Γ is independent of the choice of ultrafilter.

In fact, property Γ is an elementary property.
• Indeed the sentences ϕn, for all n ∈ N, express property Γ

where ϕn is

sup
x1,...,xn∈B1

inf
y∈B1

(
n∑

i=1

‖[xi , y ]‖2 + |τ(y)|+ ‖1− y∗y‖2)
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Property Γ, cont’d

R has property Γ. In fact, McDuff showed that for a separable
II1 factor A either
• A does not have property Γ,

• A has property Γ, A′ ∩ AU is abelian and determined up to
isomorphism by A, or

• A has property Γ and A′ ∩ AU has type II1. This property
became known as “being McDuff". She asked if the
isomorphism type here was unique.

Theorem (FHS)
A tracial von Neumann algebra is stable iff it has type 1.

Corollary (¬ CH)
If A is McDuff then it has non-isomorphic relative commutants.
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became known as “being McDuff". She asked if the
isomorphism type here was unique.

Theorem (FHS)
A tracial von Neumann algebra is stable iff it has type 1.

Corollary (¬ CH)
If A is McDuff then it has non-isomorphic relative commutants.



Quantifier complexity

• Any two embeddings of R into Rω are unitarily equivalent.

• The diagonal embedding of R into Rω is elementary so
any embedding of R into any model of Th(R) is
elementary (R is a prime model of its theory).

• One common reason model theoretically for this behaviour
is that the given theory has quantifier elimination i.e. for
any formula ϕ(x̄) and ε > 0 there is a quantifier-free
formula ψ(x̄) such that

sup
x̄∈B1

|ϕ(x̄)− ψ(x̄)| ≤ ε

is part of the theory.
• So, does Th(R) have quantifier elimination?
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Quantifier complexity, cont’d

• No! A paper of Nate Brown’s contains the following
calculation: If Γ = SL3(Z ) ∗ Z then L(Γ) is Rω-embeddable;
in fact it has an automorphism α and embedding
π : L(Γ)→ Rω for which α is not implemented by a unitary.

• But L(Γ) oα Z is also Rω-embeddable and this rules out
quantifier elimination.

• In fact, with a little more work we show that the theory of
tracial von Neumann algebras does not have a model
companion - it had been conjectured that Th(R) was such.

• Last straw: maybe Th(R) is model complete - this would
show that every formula is approximated by sup formulas.

Theorem (Goldbring, H., Sinclair)
If Th(R) is model complete then CEP fails!
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Connes’ embedding problem

• Does every separable II1 factor embed into Rω?

• Formulas which have only sup (inf) quantifiers are called
universal (existential). We write Th∀(A) (Th∃(A)) for the
universal (existential) theory of A. We can determine these
by just looking at positive sentences which evaluate to 0.

• General fact: If A ⊆ B then Th∀(B) ⊆ Th∀(A).
• R ↪→ A for any II1 factor so Th∀(A) ⊆ Th∀(R).
• R ≺ Rω so Th∀(R) = Th∀(Rω). It follows then that CEP

holds iff Th∀(A) = Th∀(R) for all II1 factors A.
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Microstate conjecture

• Fact: Th∀(A) = Th∀(B) iff Th∃(A) = Th∃(B).

• It is immediate that CEP holds iff the microstate conjecture
is true i.e. For any II1 factor A, ε > 0, *-polynomials
p1(x̄), . . . ,pn(x̄) and ā ∈ A there is b̄ ∈ R (alternatively,
there is N and b̄ ∈ MN ) such that for all i = 1, . . . ,n,

|tr(pi(ā))− tr(pi(b̄))| ≤ ε
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Even without CEP

• Th∀(R) is maximal among universal theories of II1 factors;
it follows by Łoś’ theorem that there is a minimal universal
theory i.e. there is a separable II1 factor S such that for all
II1 factors A, Th∀(S) ⊆ Th∀(A).

• Again, it is immediate that for any separable II1 factor A,
A ↪→ Sω (a poor man’s resolution to CEP).

• Note: Th∀(S) = Th∀(R) iff CEP holds.
• Good question: what could S look like?
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CEP and decidability

• The theory of II1 factors has a recursively enumerable set
of axioms i.e. it is possible to give an algorithm to list a set
of continuous sentences, the models of which are exactly
the class of II1 factors.

• If CEP holds then there is an algorithm that would take a
dense set of universal sentences and for every such ϕ and
every ε > 0 would return a value which would be the value
of ϕ in any II1 factor to within ε.

• If CEP holds the same would be true if universal was
replaced by existential in the previous statement and with
some additional work, one can even get an algorithm that
approximates values for ∃∀-sentences.

• CEP is equivalent to the decidability of the universal
theories of all type II1 tracial von Neumann algebras.
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