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Operator systems and
completely positive maps



Definition
An operator system is a unital self-adjoint subspace of a unital
C∗-algebra.

For a non-self-adjoint subalgebra (or subspace) M contained in a
unital C∗-algebra, can consider corresponding operator system
S =M+M∗ + C1 .
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Definition
For operator systems S1,S2 ∈ S, a map φ : S1 → S2 induces maps
φn :Mn(S1)→Mn(S2) by

φn([sij ]) = [φ(sij)].

We say φ is completely positive if each φn is positive.

The collection of operator systems forms a category, the category
of operator systems S. The morphisms between operator systems
are the completely positive maps. The isomorphisms are the unital
completely positive maps with unital completely positive inverse.
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Stinespring (1955) introduces the notion of a completely positive
map.

W.F. Stinespring, Positive functions on C*-algebras,
Proceedings of the AMS 6 (1955), No 6, 211–216.

Referenced by Nakamura, Takesaki and Umegaki in 1955, C. Davis in
1958, E. Størmer in 1963, B. Russo and H.A. Dye in 1966.

Arveson (1969/1972) uses completely positive maps as the basis of
his work on non-commutative dilation theory and non-self-adjoint
operator algebras.

W.B. Arveson, Subalgebras of C*-algebras, Acta Math. 123
(1969), 141–224.

W.B. Arveson, Subalgebras of C*-algebras II, Acta Math.
128 (1972), 271–308.
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Figure: Stinespring’s paper and Arveson’s series of papers each now have
over 1,000 citations. (To put this in perspective, Einstein’s paper on
Brownian motion has about 800.)



A dilation of a UCP (unital completely positive) map φ : S → B(H)
is a UCP map ψ : S → B(K ), where K = H ⊕ K ′ and

ψ(s) =

(
φ(s) ∗
∗ ∗

)
, ∀s ∈ S.

Theorem (Stinespring’s dilation theorem)

Every UCP map φ : S → B(H) dilates to a *-representation of C∗(S).
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Arveson’s extension theorem is the operator system analogue of the
Hahn-Banach theorem.

Theorem (Arveson’s Extension Theorem)

If φ : S → B(H) is CP (completely positive) and S ⊆ T , then there
is a CP map ψ : T → B(H) extending φ, i.e.

S φ //
_�

��

B(H)

T
∃ψ

<<



Boundary representations and the C*-envelope



Arveson’s Philosophy
1 View an operator system as a subspace of a canonically

determined C*-algebra, but

2 Decouple the structure of the operator system from any
particular representation as operators.

Somewhat analogous to the theory of concrete vs abstract
C*-algebras, and concrete von Neumann algebras vs W*-algebras.
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If φ : S → B is an operator system isomorphism on S, then φ(S) is
an isomorphic copy of S. The C*-envelope of S is the “smallest”
C*-algebra generated by an isomorphic copy of S.

Definition
The C*-envelope C∗e(S) is the C∗-algebra generated by an
isomorphic copy ι(S) of S with the following universal property: For
every isomorphic copy φ(S) of S, there is a surjective
*-homomorphism

π : C∗(φ(S))→ C∗e(S)

such that π ◦ j = ι, i.e.

S ι //

φ ##

C∗e(S)

C∗(φ(S))

π

OO
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Example

Let D = {z ∈ C | |z | < 1}. The disk algebra is
A(D) = H∞(D) ∩ C (D). By the maximum modulus principle, the
norm on A(D) is completely determined on ∂D. So the restriction
map A(D)→ C (∂D) is completely isometric. But no smaller space
suffices to norm A(D). Hence C∗e(A(D)) = C (∂D).



We need to be able to construct the C*-envelope C∗e(S) using only
knowledge of S.

Definition
An irreducible representation σ : C∗(S)→ B(H) is a boundary
representation for S if the restriction σ |S of σ to S has a unique
UCP extension.

Boundary representations give irreducible representations of C∗e(S).
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Let σ : C∗(S)→ B(H) be a boundary representation. By the
universal property of C∗e(S) there is an operator system isomorphism
ι : S → C∗e(S) and a surjective *-homomorphism
π : C∗(S)→ C∗e(S).

We can extend σ ◦ ι |S to a UCP map ρ : C∗e(S)→ B(H). Then
ρ ◦ π = σ on S. By the unique extension property, ρ ◦ π = σ on all of
C∗(S). Hence ρ is an irreducible *-representation of C∗e(S).

S ι //

φ !!

C∗e(S)

ρ
$$

C∗(S)

π

OO

σ
// B(H)
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If there are enough boundary representations, then we can use them
to construct C∗e(S) from S.

Theorem (Arveson)

If there are sufficiently many boundary representations {σλ} to
completely norm S, then letting σ = ⊕σλ,

C∗e(S) = C∗(σ(S)).



Example

Let A ⊆ C (X ) be a function system. The irreducible representations
of C (X ) are the point evaluations δx for x ∈ X , which are given by
representing measures µ on A,

f (x) =

∫
X

f dµ, ∀f ∈ A.

Thus δx is a boundary representation for A if and only if x has a
unique representing measure on A. The set of such points is precisely
the classical Choquet boundary of X with respect to A.

Arveson calls the set of boundary representations of an operator
system S the (non-commutative) Choquet boundary.
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Two big problems



Although Arveson was able to construct boundary representations,
and hence the C*-envelope, in some special cases, he was unable to
do so in general. The following questions were left unanswered.

Questions
1 Does every operator system have sufficiently many boundary

representations?

2 Does every operator system have a C*-envelope?



Choi-Effros (1977) prove an injective operator system is
(completely order isomorphic to) a C*-algebra.

Theorem (Hamana (1979))

Every operator system is contained in a unique minimal injective
operator system.

Corollary

Every operator system has a C*-envelope.

Very difficult to “get your hands on” this construction. Does not give
boundary representations.
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Muhly-Solel (1998) give a homological characterization of
boundary representations (using the notions of orthoprojectivity and
orthoinjectivity).

Dritschel-McCullough (2005) characterize the unique extension
property, clarifying Muhly and Solel’s work, and give a new proof of
the existence of the C*-envelope. Uses ideas of Agler.

Say a UCP map φ : S → B(H) is maximal if, whenever ψ is a UCP
dilation of φ, ψ = φ⊕ψ′. A UCP map is maximal if and only if it has
the unique extension property.

Theorem (Dritschel-McCullough (2005))

There are maximal representations {σλ} such that letting σ = ⊕σλ,

C∗e(S) = C∗(σ(S)).
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Arveson (1998) publishes the third paper in his series.

W.B. Arveson, Subalgebras of C*-algebras III: Multivariable
operator theory, Acta Math. 181 (1998), 159–228.

Arveson (2008) returns to the questions he raised in 1969.

W.B. Arveson, The noncommutative Choquet boundary,
Journal of the AMS 21 (2008), No. 4, 1065–1084.

Gives a new proof of Dritschel-McCullough’s results using ideas of
Ozawa. Using an intricate direct integral argument, shows that when
S is separable, a maximal representation is a.e. an integral of
boundary representations.

Theorem (Arveson)

Every separable operator system has sufficiently many boundary
representations.
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Our results



Theorem (Davidson-K (2013))

Every operator system has sufficiently many boundary representations.

Proof is dilation-theoretic and works in complete generality. Very
much in the style of Arveson’s original work.



Theorem (Davidson-K (2013))

Every operator system has sufficiently many boundary representations.

Proof is dilation-theoretic and works in complete generality. Very
much in the style of Arveson’s original work.



A completely positive map φ is pure if whenever 0 ≤ ψ ≤ φ implies
ψ = λφ.

Lemma (Arveson (1969))

If φ : S → B(H) is pure and maximal, then it extends to a boundary
representation.

Our strategy is to extend a pure UCP map in small steps, taking care
to preserve purity, until we attain maximality.
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Say a UCP map φ : S → B(H) is maximal at (s, x) ∈ S × H if,
whenever ψ : S → B(K ) dilates φ, ‖ψ(s)x‖ = ‖φ(s)x‖.

Key Lemma

If φ : S → B(H) is a pure UCP map and (s, x) ∈ S × H , then there
is a pure UCP map ψ : S → B(H ⊕ C) dilating φ that is maximal at
(s, x).

For a UCP map ψ : S → B(H ⊕ K ), the compression to
span{H , ψ(s)x} has the same norm at (s, x).

The set {ψ : S → B(K ) | ψ dilates φ} is point-weak* compact,
so can find at least one dilation ψ : S → B(H ⊕ K ) that is
maximal at (s, x), say ψ(s)x = φ(x)⊕ η.

Take an extreme point of the set
{ψ : S → B(H ⊕ C) | ψ dilates φ, ψ(s)x = φ(s)x ⊕ η}.
Delicate argument proves purity.
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Theorem
Every pure UCP map φ : S → B(H) dilates to a maximal pure UCP
map, which extends to a boundary representation.

Easy transfinite induction argument on the key lemma obtains
dilation that is maximal at each pair (s, x) ∈ S × H .
If S is separable and dim H <∞, then can work entirely with finite
rank maps.
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Theorem
There are sufficiently many boundary representations to completely
norm S.

First proof uses C*-convexity of matrix states, and the
Krein-Milman type theorem of Webster-Winkler (1999) for C*-convex
sets. A result of Farenick (2000) shows the C*-extreme points of the
matrix states coincide with the pure matrix states. (More recently,
Farenick gave a very nice direct proof of this result that avoids the
Webster-Winkler theorem.)

Shorter second proof suggested by Kleski. Easy to obtain that the
boundary representations of Mn(S) norm Mn(S). A result of
Hopenwasser implies boundary representations of Mn(S) correspond
to boundary representations of S.
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The future



Over 40 years of work (too many names to mention) has led to the
development of many techniques and applications.

In recent years, a great deal of evidence has been compiled showing
that noncommutative techniques are needed even in the classical
commutative setting. For example, the Drury-Arveson multiplier
algebra H∞d has been much more tractable than H∞(Bd). One
explanation is that C∗e(H∞d ) is noncommutative, while C∗e(H∞(Bd)) is
commutative. Classical notions of measure and boundary may not
suffice for d ≥ 2 variables.

All restrictions have now been removed on the use of Arveson’s
ideas from 1969. Perhaps we can now realize his vision.
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Thanks!


