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Cumulus convection

• Cumuli are highly turbulent, covering a 
broad spectrum of scales
– Cloud scale: O(103-104 m)
– Sub-cloud drafts: O(10-103 m)
– Inertial subrange: O(10-2-10 m)

• Difficult to represent in regional and global atmospheric models
– Sensitive to initial conditions
– Impossible to resolve spectrum of energy-containing scales

• Errors in cloud representation limit the predictive skill of 
weather/climate models



Cumulus parameterization

• Used when cloud entities are too small to be explicitly represented 
on a numerical grid
– Represent collective effects of cloud fields based on parameters of 

resolved flow
– Assume clear separation between cloud scale and grid scale

Arakawa and Schubert (1973)



Parameterization problems

• Modern weather models moving to “convection-permitting” 
resolutions to avoid error-prone parameterization schemes
– Short-range regional forecasts [O(1 km)]
– Global forecast models [O(10 km)]
– Problem: grid spacings of 10 km-1 km in the “grey zone”: clouds partially 

resolved and scale-separation breaks down

• Even outside of grey zone, cumulus parameterization highly 
problematic
– Phase error in diurnal convection cycle
– Clouds fail to organize into realistic larger-scale structures

• How can we overcome these errors?



One source of error

• Modern understanding (and parameterization) of cumuli typically 
neglects the role of turbulence
– Treats clouds as adiabatic or entraining/detraining plumes or thermals
– Interaction with environment and other clouds neglected or externally 

specified; not informed by theory
– Fractional entrainment rate critical for climate prediction (e.g., Pascale 

et al 2011) but poorly constrained

• More logical to treat clouds as buoyancy-containing components of 
a turbulent field
– Grant and Lock (2004): scaling/similarity theory based on equilibrium 

TKE budget



Grant and Lock (2004)

• Consider the equilibrium TKE budget

• For equilibrium shallow cumulus convection, B and E roughly 
balanced (Grant and Lock 2004)
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Grant and Lock (2004)

• Consider the equilibrium TKE budget

• For equilibrium shallow cumulus convection, B and E roughly 
balanced (Grant and Lock 2004)
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Nondimensional scaling parameter 
(fractional cloud “length”)



Does it work?

• Effectively scales 
B/E for shallow cloud 
layers in radiative-
convective 
equilibrium
– Also provides a 

means to estimate 
cloud size and 
entrainment (more 
later)

Grant and Lock (2004)



More challenging situations

• Most cloud fields are not in equilibrium
– Cloud fields often controlled by mesoscale features like mountains, 

fronts, outflow boundaries, etc.

• Does similarity theory hold for evolving cloud fields?
– Only if B and E remain the dominant terms of TKE budget



The testing ground: Dominica

• Natural laboratory for terrain-forced convection
– Persistent conditional instability
– Simple quasi-2d geometry
– Trade-wind flow ascends island’s high (1.5-km) terrain

Trade-
wind flow

Landsat, JD320, 2002

Dominica

Guadeloupe (Fr)



Experiments in Dominica

• In 2007 raingauges installed along lower 
transect
– Complemented by Météo-France radars on 

French islands to north and south
– Intense orographic enhancement
– Minimal diurnal signature; mechanical forcing 

dominates over thermal
(Smith et al 2009; Kirshbaum and Smith 2009)

7 months of radar (2008) 12 months of rain gauges (2007-2008)



Large-eddy simulations

• Bryan cloud model 
v13 (Bryan and 
Fritsch 2002)
– Fully nonlinear, 

nonhydrostatic, 
compressible

– Eulerian with split 
time step for 
acoustic modes

– 6th-order horiz. adv. 
(explicit diffusion)

– 5th order vert. adv. 
(implicit diffusion)

Trade-wind 
flow

• TKE 1.5-order mixing
• Morrison 2-M warm-rain microphysics
(Seifert & Beheng 2001)

Mountain parameters
H=500 m, a=5 km



Large-eddy simulations

• Narrow, deep y-
periodic domain
– Wide enough in y to 

fit multiple clouds
– Waves, clouds can 

penetrate into free 
troposphere

– Quasi-steady cloud 
field forms upstream 
of terrain

– Modified flow exits 
outflow boundary

Trade-wind 
flow

• TKE 1.5-order mixing
• Morrison 2-M warm-rain microphysics
(Seifert & Beheng 2001)

Mountain parameters
H=500 m, a=5 km



The upstream flow

• Dominica located close to 
two trade-wind field 
campaigns
– BOMEX (1969)
– RICO (2004)

• Use composite 
background flow and 
large-scale forcing for 
each case

BOME
X
RICO

Terrain extends 
up to cloud base



RICO simulation



Vertical cross-section

• Quasi-steady upstream trade-wind cloud field
• Inversion slowly rises, then sinks rapidly over mountain

– Hydraulic, shallow-water-like response to terrain

Contours of mean cloud water (filled) and θL (K) (lines)



Vertical fluxes (t=3-6 hr)

• Clouds deeper in RICO, but more vigorous in BOMEX
– Owing to stronger potential instability in BOMEX?

Solid: max cloud top
Dashed: inversion base



Precipitation and cloud fraction

• Precipitation increases faster (15-fold) 
than cloud fraction (4-fold)
– Island clouds more numerous and efficient 

(precipitation efficiency increases from 4% 
to 12%)

Averaged rain rate over t=3-6 hr

BOME
XRIC

O OBS

Mean cloud fraction (RICO)

Mtn: 64-69 km
Sea: 79-99 km



Potential mechanisms

• Why are island clouds more efficient?
– Stronger instability or deeper cloud 

layer over island?  NO (not shown)…
– More vigorous and liquid-rich? YES…

but why?

• Hypothesis: island clouds are wider 
and less diluted by entrainment than 
ocean clouds
– Enhances cloud vigor and precipitation 

efficiency
– Can this be explained using TKE 

scaling?



Reduced dilution

• Island clouds have much lower 
entrainment rates
– Can also be seen from mixing 

(“Paluch”) diagrams

Fractional entrainment profiles (computed 
based on moist static energy)



Conditional core averages (t=3-6 hr)

• Reduced dilution renders island cloud cores more buoyant, 
vigorous, and liquid-rich

Perturbations relative to local y-average (RICO simulation)



Dilution and cloud size

• Is decreased cloud dilution related to increased cloud size?
– Fundamental hypothesis of entraining plume models [e.g., Morton 

(1957)]
– Khairoutdinov and Randall (2006): reduced dilution in wider clouds 

facilitates transition to deep convection

Khairoutdinov and Randall (2006)



Cloud size (RICO simulation)

• Clouds (and cores) significantly wider over 
island
– Most noticeable near cloud base

Size spectra at z=1 km

Mean size profiles



Sensitivity of vigor to cloud size

•  

• Wider clouds more vigorous and liquid-rich
• More efficient precipitation production due to

– Higher accretion rates (Kirshbaum and Smith 2009)
– Larger in-cloud hydrometeor residence times



Controlling the cloud size

• Can isolate cloud-size mechanism by conducting experiments that 
control the cloud size, with all else held fixed

• Create neutrally buoyant moisture “patches” in upstream flow with 
fixed horizontal wavelengths
– Perturbations columnar in shape
– Use sounding from RICO, but without surface fluxes or large-scale 

forcings (suppresses upstream convection)
– Convection only forms directly over the island



Controlling the cloud size

•  
Core profiles

Clouds at t=3 hr



Intermediate conclusions and outlook

• What we have shown
– Clouds are wider over the island than over the sea
– Wider clouds are generally more vigorous and liquid-rich
– Together with increased cloud number, this explains the increased 

precipitation observed over the island

• Why, then, do the clouds widen over the island?  Two hypotheses:
1. Turbulent constraints
2. Sub-cloud moisture anomalies



Recall Grant and Lock (2004)

• Consider the equilibrium TKE budget

• For equilibrium shallow cumulus convection, B and E roughly 
balanced (Grant and Lock 2004)
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Applying scaling to simulation

• Scaling from Grant and Lock 
(2004) works well, even for non-
equilibrium island flow

• Details of dynamics over 
windward slope:
– B, E, and ADV all increase but not 

simultaneously
– E lags ADV by eddy-turnover time 

(zcld/w*)
– Equilibrium approximation 

overestimates dissipation (and 
hence w*) in this region

TKE-budget terms, integrated over cloud layer

From Kirshbaum and Grant (QJ, 2012)



Scaling cloud size and dilution

• Cloud diameter • Fractional entrainment rate
– Balance: kinetic energy 

supplied to entrained air 
scales with turbulent 
dissipation rate

• Can use TKE scaling to link gross characteristics of cloud layer with 
internal cloud properties 

Depth of 
cloud layer

Fractional “length” 
of cloudy updrafts



Testing the scaling

• Scaling captures trends of 
changing cloud field
– But overestimates D 

increase due to 
assumption of constant 
cloud density Mean cloud diameter at 

z=1 km

Fractional entrainment 
over z=1-2 km

From Kirshbaum and Grant (QJ, 2012)



Physical interpretation

• Turbulent constraints on w* control cloud response as mb increases 
over island

• Increased cloud diameter:
– w* constrained by instability (which remains roughly constant), cannot 

keep pace with increased mb

– For a given cloud density, increased mb requires increased D

• Decreased fractional entrainment:
– Dissipation, which scales with w*3, also cannot keep pace with 

increased mb

– For balance to be maintained between entrainment and dissipation, ε 
must decrease 



A secondary mechanism:
sub-cloud moisture anomalies

• Consider basic mechanisms for cloud formation
– Ocean clouds: sub-cloud eddies ascend through cloud base
– Island clouds: forced lifting of moist air

• Island clouds linked to moisture anomalies in sub-cloud layer (e.g., 
Woodcock 1960; Kirshbaum and Smith 2009)
– Moist patches saturate first when lifted by the island
– Become buoyant through latent-heat release

• Morphological changes to clouds tied to spectral differences 
between sub-cloud kinematic and moisture fields



Sub-cloud moisture anomalies

• Power spectra of upstream w’ and qv’ fields at z=500 m

– w perturbations control cloud sizes over ocean
– qv perturbations control cloud sizes over island



Which mechanism is it?

• Speculation
– Below ~1 km: strong lifting, non-equilibrium.  Sub-cloud moisture 

patches determine morphology



Which mechanism is it?

• Speculation
– Below ~1 km: strong lifting, non-equilibrium.  Sub-cloud moisture 

patches determine morphology
– Above: clouds evolving toward equilibrium state.  TKE scaling 

increasingly relevant.



Summary

• Sharp uplift over narrow island dramatically increases turbulent 
fluxes and precipitation
– Enhancement not just due to increased cloud coverage
– Clouds themselves are invigorated

• Hypothesis: reduced dilution in wider island clouds creates more 
intense and liquid-rich updafts

• Clouds widen and purify for two reasons
– Forced saturation of broad sub-cloud moisture “patches”
– Turbulent constraints on updraft velocities force clouds to widen and 

become less diluted



Conclusions and future work

• Findings relevant to basic understanding and parameterization of 
convection
– TKE scaling provides a link between grid-scale parameters and internal 

cloud properties
– Allows entrainment rate (the great unknown) and cloud size to be 

inferred from mesoscale environment

• Future work
– Use turbulence theory for observational entrainment retrievals
– Incorporate TKE scaling into convection parameterization schemes 

(may need to design new schemes from the ground up)
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