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Jordan canonical form of a matrix

Let T ∈ Mn(C).

There exists a polynomial p such that p(T ) = 0.
There exists an invertible matrix X such that XTX−1 is in Jordan form.
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Functional model for Jordan cells

Let J ∈ Mn(C) be the usual Jordan cell with eigenvalue 0,

J =


0 1

0 1
. . .

. . .

0 1
0



Consider the Hardy space H2 = {f (z) =
∑∞

n=0 anzn :
∑∞

n=0 |an|2 <∞}. The unilateral
shift S acts on H2 as (Sf )(z) = zf (z).
Let θ(z) = zn and consider the space

Kθ = (θH2)⊥.

Up to unitary equivalence, we have that J = PKθS |Kθ.
Allowing for functions θ with more than one root, we see that any linear operator on a
finite dimensional Hilbert space is similar to such a functional model.
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Functional models in infinite dimension?

Let T ∈ B(H) be a completely non-unitary contraction. Define

DT = (I − T ∗T )1/2,DT = DT H

DT∗ = (I − TT ∗)1/2,DT∗ = DT∗ H.
The characteristic function of T is the contractive operator-valued holomorphic function

ΘT : D→ B(DT ,DT∗)

defined as
ΘT (λ) = (−T + λDT∗(1− λT ∗)−1DT )| DT .

We also have the pointwise defect function

∆T : T→ B(DT )

such that
∆T (ζ) = (I −ΘT (ζ)∗ΘT (ζ))1/2.

One check that ∆T is essentially bounded. Finally, put

KΘT = (H2(DT∗)⊕∆TL2(DT ))	 {ΘTu ⊕∆Tu : u ∈ H2(DT )}

SΘT = PKΘT
(S ⊕ U)|KΘT .

Then, T is unitarily equivalent to SΘT (this whole machinery is known as the
Sz.-Nagy–Foias model theory).
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This is too complicated...

By restricting the class of contractions we consider, we can get a much simpler model,
which is a much closer analogue of the Jordan form for matrices.

Let T be a contraction on a Hilbert space H. In general, there is no polynomial such
that p(T ) = 0.

Definition

A (completely non-unitary) contraction T ∈ B(H) is said to be of class C0 if the
associated H∞-functional calculus has non-trivial kernel.

Theorem (Sz.-Nagy–Foias, Bercovici,...)

Let T ∈ B(H) be a C0 contraction. Then, there exists a unique Jordan operator
J ∈ B(K) which is quasisimilar to T : there exist two bounded linear injective operators
W : H → K,Z : K → H with dense range and the property that WT = JW ,ZJ = TZ.

The relation of quasisimilarity is rather weak...Can this be improved?
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Unitary equivalence

(Arveson 1967, C. 2013) Let T1 and T2 be two quasisimilar C0 contractions
(satisfying some mild technical conditions). Assume that there exists a completely
isometric algebra isomorphism

ϕ : {T1}′ → {T2}′

such that ϕ(T1) = T2. Then, T1 and T2 are unitarily equivalent.

What about similarity between T1 and T2? Can it be obtained under the weaker
assumption that ϕ be only a completely bounded homomorphism with completely
bounded inverse?

Possible strategy: up to similarity, reduce to the situation addressed by the theorem
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R. Clouâtre (University of Waterloo) Completely bounded isomorphisms COSy 2014 6 / 15



Paulsen’s similarity theorem

Theorem (Paulsen 1984)

Let A be a unital operator algebra and ϕ : A → B(H) be a unital completely bounded
homomorphism. Then, there exists an invertible operator X with

‖X‖2 = ‖X−1‖2 = ‖ϕ‖cb

and such that map
a 7→ Xϕ(a)X−1

is completely contractive.

R. Clouâtre (University of Waterloo) Completely bounded isomorphisms COSy 2014 7 / 15



The problem

What about a two-sided version of Paulsen’s theorem?

Question Let A,B be unital operator algebras and ϕ : A → B be a unital completely
bounded homomorphism with completely bounded inverse (“completely bounded
isomorphism”). Can we find two invertible operators X and Y with the property that the
map

XaX−1 7→ Yϕ(a)Y−1

is completely isometric?
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A general result

Theorem (C., 2014)

Let A ⊂ B(H1) and B ⊂ B(H2) be unital operator algebras. Let ϕ : A → B be a unital
completely bounded isomorphism. Then, for any ε > 0 and any finite set A0 ⊂ A, there
exist two invertible operators X ∈ B(H1) and Y ∈ B(H2) such that the map

XaX−1 7→ Yϕ(a)Y−1

is a complete contraction and such that

‖XaX−1‖ ≤ (1 + ε) (1 + ε /ρ(ε)) ‖Yϕ(a)Y−1‖

for every a ∈ A0, where ρ(ε) is a positive constant depending only on ε.

Moreover, if the subset A0 contains no non-trivial quasi-nilpotent element, then we have
the sharper inequality

‖XaX−1‖ ≤ (1 + ε /ρ) ‖Yϕ(a)Y−1‖

for every a ∈ A0, where
ρ = inf

a∈A0

r(a).

Paulsen’s theorem does not give lower bounds. Can we do better? Can we get a
complete isometry?
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Special case

Theorem (C.,2014)

Let A ⊂ B(H1) and B ⊂ B(H2) be unital operator algebras. Assume that there exists a
unital completely bounded isomorphism θ : C → A where C is either a C∗-algebra or a
uniform algebra. Let ϕ : A → B be a unital completely bounded isomorphism. Then,
there exist two invertible operators X ∈ B(H1) and Y ∈ B(H2) such that the map

XaX−1 7→ Yϕ(a)Y−1

is a complete isometry.
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Operator algebras similar to C ∗-algebras

The previous theorem shows that we can deal with any algebra that is similar to a
C∗-algebra.
In particular, it covers the case of commutative amenable operator algebras
(Marcoux-Popov, 2013).
What about general amenable operator algebras?

Example (Choi-Farah-Ozawa, 2013)

Let C = `∞(N,M2(C)) and J = c0(N,M2(C)). Denote by Q : C → C /J the quotient
map. Let Γ be an abelian group and π : Γ→ Q(C) be a uniformly bounded
representation. A clever choice of Γ and π yields that the operator algebra

A = Q−1
(

span π(Γ)
)

is amenable but not similar to a C∗-algebra.

We can answer the question in the affirmative for the algebra A (C.-Marcoux 2014)
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Back to the classification problem: application to quotient algebras of H∞

Theorem (C.,2014)

Let θ ∈ H∞ be an inner function.

(i) The algebra H∞/θH∞ contains no non-trivial quasi-nilpotent elements if and only if
θ is a Blaschke product with simple roots.

(ii) The algebra H∞/θH∞ is a uniform algebra if and only if θ is an automorphism of
the disc. In that case, the algebra is isomorphic to C. In particular, H∞/θH∞ is a
C∗-algebra if and only if it is a uniform algebra.

(iii) The following statements are equivalent.

(a) There exists a unital completely bounded isomorphism

Φ : H∞/θH∞ → F

for some uniform algebra F .
(b) There exists a unital completely bounded isomorphism

Φ : H∞/θH∞ → C

for some unital C∗-algebra C.
(c) the function θ is a Blaschke product whose roots {λn}n ⊂ D satisfy the Carleson
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The general case?

A counter-example (suggested by Ken Davidson) shows that this stronger version does
not hold in general, and answers the original question in the negative.
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Idea behind the counterexample

Consider the operator space D ⊂ M2(C) consisting of elements of the form(
z1 0
0 z2

)
where z1, z2 are complex numbers, along with the operator space R ⊂ M2(C) consisting
of elements of the form (

z1 z2

0 0

)
where z1, z2 are complex numbers.

The map ψ : R → D defined as

ψ

(
z1 z2

0 0

)
=

(
z1 0
0 z2

)
is easily seen to be a completely bounded linear isomorphism with completely bounded
inverse. Intuitively, it is clear that this cannot be made similar to a complete isometry:
‖ · ‖2 gives rise to Hilbert space structure while ‖ · ‖∞ does not.
Embedding these operator spaces in the upper-right corner of an operator algebra
together with some easy but tedious computations yields the desired counter-example.
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Thank you!
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