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My aim is to demonstrate that a little bit of logic (model theory, to
be precise) can give a fresh perspective on some aspects of
operator algebras.

All algebras are unital, and most of them are C*-algebras. (Most
of what I will say applies to II1 factors as well.)

Notation
A: a separable C*-algebra or (in most of the results) a II1 factor
with a separable predual.
U : a nonprincipal ultrafilter on N.
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Massive algebras

AU is the ultrapower of A,

`∞(A)/cU (A)

where
cU (A) = {a ∈ `∞(A) : lim

n→U
‖an‖ = 0}.⊕

N
(A) = {a ∈ `∞(A) : lim

n→∞
‖an‖ = 0}.

Via the diagonal embedding, we identify A with a subalgebra of AU

or a subalgebra of `∞(A)/
⊕

N(A).
Ultrapowers are well-studied in logic and all of their important
properties follow from two basic principles. Only one of them
(countable saturation) is shared by `∞(A)/

⊕
N(A).
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The relative commutant is

A′ ∩ AU = {b : ab = ba for all a ∈ A}.

This is isomorphic to

F (A) = A′ ∩ AU/Ann(A,AU )

when A is unital.

There is no known abstract analogue of relative commutant in
model theory in general.
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Massive algebras

An algebra C is countably quantifier-free saturated if for every
sequence of *-polynomials pn(x1, . . . , xn) with coefficients in C and
rn ∈ [0, 1] the system

‖pn(a1, . . . , an)‖ = rn

has a solution in C whenever every finite subset has an
approximate solution in C .

Proposition

Ultraproducts, asymptotic sequence algebras, as well as relative
commutants of their separable subalgebras, are countably
quantifier-free saturated.
Coronas of σ-unital algebras are countably degree-1 saturated.
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Applications of saturation

Proposition (Choi–F.–Ozawa, 2013)

Assume A is countably degree-1 saturated and Γ is a countable
amenable group. Then every uniformly bounded representation
Φ: Γ→ GL(A) is unitarizable.



Discontinuous functional calculus

Proposition

Assume C is countably degree-1 saturated,

1. a ∈ C is normal,

2. B ⊆ {a}′ ∩ C is separable,

3. U ⊆ sp(a) is open, and

4. g : U → C is bounded and continuous.

Then there exists c ∈ C ∗(B, a)′ ∩ C such that for every
f ∈ C0(U ∩ sp(a)) one has

cf (a) = (gf )(a).

Brown–Douglas–Fillmore’ Second Splitting Lemma

is the special case when C = B(H)/K (H), sp(a) = [0, 1], and
g(x) = 0 if x < 1/2 and g(x) = 1 if x > 1/2.
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Strongly self-absorbing (s.s.a.) C*-algebras

Definition (Toms–Winter)

A separable algebra A is s.s.a. if

1. A ∼= A⊗ A,

2. The isomorphism between A and A⊗ A is approximately
unitarily equivalent with the map a 7→ a⊗ 1A.

Lemma
Assume A is s.s.a.

1. (Connes) If A is a II1 factor, then A ∼= R.

2. A ∼=
⊗
ℵ0 A.

3. (Effros–Rosenberg, 1978) If A is a C*-algebra, then A is
simple and nuclear.
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All known s.s.a. C*-algebras

O2

O∞⊗ UHF

O∞ UHF

Z



Proposition (McDuff, Toms–Winter)

Assume D is s.s.a.. Then for a separable A the following are
equivalent.

(i) A⊗ D ∼= A.

(ii) There is a unital *-homomorphism from D into A′ ∩ AU .

Morally, (i) and (ii) are equivalent to

(iii) AU ⊗ D ∼= AU

Theorem (Ghasemi, 2013)

Every countably degree-1 saturated algebra is tensorially prime.
In particular, Calkin algebra is tensorially prime and AU ⊗ D 6∼= AU

for any infinite-dimensional A and U.



Proposition (McDuff, Toms–Winter)

Assume D is s.s.a.. Then for a separable A the following are
equivalent.

(i) A⊗ D ∼= A.

(ii) There is a unital *-homomorphism from D into A′ ∩ AU .

Morally, (i) and (ii) are equivalent to

(iii) AU ⊗ D ∼= AU

Theorem (Ghasemi, 2013)

Every countably degree-1 saturated algebra is tensorially prime.
In particular, Calkin algebra is tensorially prime and AU ⊗ D 6∼= AU

for any infinite-dimensional A and U.



Proposition (McDuff, Toms–Winter)

Assume D is s.s.a.. Then for a separable A the following are
equivalent.

(i) A⊗ D ∼= A.

(ii) There is a unital *-homomorphism from D into A′ ∩ AU .

Morally, (i) and (ii) are equivalent to

(iii) AU ⊗ D ∼= AU

Theorem (Ghasemi, 2013)

Every countably degree-1 saturated algebra is tensorially prime.
In particular, Calkin algebra is tensorially prime and AU ⊗ D 6∼= AU

for any infinite-dimensional A and U.



All ultrafilters are nonprincipal ultrafilters on N

Question (McDuff 1970, Kirchberg, 2004)

Assume A is separable. Does A′ ∩ AU depend on U?

Proposition

If A is a commutative tracial von Neumann algebra, then AU ∼= AV

for all nonprincipal ultrafilters U , V on N.

Proof.
By Maharam’s theorem, AU ∼= L∞(22

ℵ0 , Haar measure).
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Theorem (Ge–Hadwin, F., F.–Hart–Sherman, F.–Shelah)

Assume A is a separable C*-algebra or a II1-factor with a separable
predual.
If Continuum Hypothesis (CH) holds then AU ∼= AV and
A′ ∩ AU ∼= A′ ∩ AV for all nonprincipal ultrafilters U , V on N.

If CH fails and A is infinite-dimensional, then

1. there are 22
ℵ0 nonisomorphic ultrapowers of A and

2. there are 22
ℵ0 nonisomorphic relative commutants of A.
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CH is a red herring

Two C*-algebras C1 and C2 have the countable back-and-forth
property if there exists a family F with the following properties.

1. Each f ∈ F is a *-isomorphism from a separable subalgebra of
C1 into C2.

2. If {fn : n ∈ N} is a ⊆-increasing chain in F then
⋃

n fn ∈ F .

3. If f ∈ F , a ∈ C1 and b ∈ C2 then there is g ∈ F such that
g ⊇ f , a ∈ dom(g) and b ∈ range(g).

Lemma
Assume C1 and C2 have the countable back-and-forth property and
each one has a dense subset of cardinality ℵ1.
Then they are isomorphic.

CH ⇔ AU , A′ ∩ AU has a dense subset of cardinality ℵ1 for all
separable A.
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One of my favourite open problems

Let s denote the image of the unilateral shift in the Calkin algebra
B(H)/K (H).

Question (Brown–Douglas–Fillmore)

Is there an automorphism of B(H)/K (H) that sends s to s∗?
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Theorem (F., 2007)

There is a model of ZFC in which all automorphisms of
B(H)/K (H) are inner, in particular no automorphism sends s to s∗.

Question
Is there a countable back-and-forth property F for B(H)/K (H),
B(H)/K (H) such that f (s) = s∗ for all f ∈ F?

The answer to this question is unlikely to be independent from
ZFC.
Under CH, a positive answer is equivalent to the positive answer to
the BDF question.
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Theorem
Assume Continuum Hypothesis. Let D be s.s.a.. Then

D ′ ∩ DU ∼= DU

and
D ′ ∩ `∞(D)/

⊕
N

(D) ∼= `∞(D)/
⊕
N

(D).



Theorem
Assume C is countably saturated, D is s.s.a., and that there is a
unital *-homomorphism from D into X ′ ∩ C for every separable X .
Then

1. Any two unital *-homomorphisms of D into C are unitarily
conjugate.

2. Algebras C and D ′ ∩ C have the countable back-and-forth
property.



Proposition

Assume D is O2 or UHF and that CH holds. Then there is a unital
*-homomorphism

Φ:
⊗
ℵ1

D → DU

such that the relative commutant of its range is trivial.



Concluding remarks

Theorem (F.–Shelah, 2014)

The corona of C ([0, 1)) is countably saturated, but the corona of
C (Y ) for some one-dimensional, locally compact subset of R2 is
not.

Question
Is the corona of C (Rn) countably saturated for n ≥ 2?

For more information see CJ Eagle, A Vignati, arXiv:1406.4875,
2014.
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