The Spectral Geometry of Curved Noncommutative Tori

Masoud Khalkhali

COSY 2014

1/36



Spectral Triples (Connes)

» Noncommutative geometric spaces are described by spectral
triples (first order elliptic PDE's on NC spaces), (A, H, D),
where

T A— L(H) (*-representation),
D=D":Dom(D)CH—H, sa.

Dn(a) —m(a)D € L(H), bounded commutators,
D has compact reseolvant.

» Example: The Dirac spectral triple (C>°(M), L*(M, S), D),
eg. D= %% or the Cauchy-Riemann operator %.



The scalar curvature of a spectral triple

» Connes’ distance formula recovers the metric from D, but a
more difficult issue is how to define and compute the scalar
curvature using D.

» A spectral triple is a NC Riemannian manifold. It is tempting
to think that one might be able to define a Levi-Civita type
connection for a spectral triple and then define the curvature
of this connection. For many reasons this algebraic approach
does not work in NCG in general.

> Instead one needs to import ideas of spectral geometry to
NCG.



Spectral geometry: can one hear the shape of a drum?

» Weyl's law: for a compact Riemannian manifold M

anOI (M) n

N(A) ~ o M Ao

where N(\) = #{)\; < A} is the eigenvalue counting function
for the Laplacian A on M.
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> A better way to think of Weyl's law: quantize the classical
2
Hamiltonian h(x,p) = 2 4 V(x), to the quantum
Hamiltonian H = — 2 A 4 V(z). Then

1

N(@a<A<b) = _Vol{a < h <b}+o(h™%)

- (27h)



(Physics proof: by Heisenberg unceratinly relation, each
quantum state occupies a volume of ~ (27h)? in phase
space. quantized energy levels are approximated by phase
space volumes; Bohr's correspondence principle; semiclassical
approximation)

Weyl's law: One can hear the volume and dimension of a
manifold. We shall see one can hear the volume and scalar
curvature of curved noncommutative tori too.



Beyond Weyl's law

» (M, g) = closed Riemannian manifold. Laplacian on forms
A= (d+d)?: QP (M) — QP(M),
has pure point spectrum:

0< <A< - =0

» Fact: Dimension, volume, total scalar curvature, Betti
numbers, and hence the Euler characteristic of M are fully
determined by the spectrum of A (on all p-forms).
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Heat trace asymptotics

> N(\) = Tr Py is too brutal. Mollify it by a smoothing

operator like Tr(e7**) and use Tauberian theorems to obtain
information about N(\).

> k(t,z,y) = kernel of e~*. Asymptotic expansion near t = 0:

1
kt@,@) o~ oy (@0(@, A)Fau(w, B)t+as(z, At +--)

> a;(x, D), Seeley-De Witt-Gilkey coefficients.



» Theorem: a;(z, ) are universal polynomials in the curvature
tensor R = le-kl and its covariant derivatives:

ap(z, ) = 1 Weyl's law
1
ar(x,N) = ES(x) scalar curvature
A) = L (@QR@)P - 2Ric(@)? +5|S(2)]?
wrw8) = s QIRE)P — 2Ric() +5/S(@))



Noncommutative Local Invariants

> Local geometric invariants such as scalar curvature of
(A, H, D) are detected by the high frequency behavior of the
spectrum of D and the action of A via heat kernel asymptotic
expansions of the form

Trace (a e*tDQ) ~ Z a;(a, D?) tn /2 N 0, a € A

=0
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Example: Gauss-Bonnet

» For surfaces )
Y)=— | KdA
X(2) =5 /Z

» Spectral zeta function: Let Ay < Ay < A3 < --- be the
eigenvalues of A,

and
Cals) =D A% R(s)> 1

It has a mermorphic extension to C with a simple pole at
5= 3. G-B is equivalent to

Ca(s)+1=0



Curved noncommutative tori

> Ay: universal C*-algebra generated by unitaries U and V'

VU = e Uv.

» Smooth structure:

F={ Y amaU"V" (ama) € S22}

m,neEZ
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» Derivations d1,02 : A5° — A

s(U)=U, &(V)=0,

» Canonical trace ¢y : A9 — C



Complex structure on Ay

> Fix 7 =7 +ime, 72 =S(7) >0, and define the Dolbeault
operators

81251—|—7‘52, 0F := 61 + 7.

v

Let Ho = L?(Ag)= GNS completion of Ay w.r.t. ©p.

» H(10) = Hilbert space of (1,0)-forms: completion of finite
sums Y adb, a,b € Ag°, under

(adb,a’ ') := po((a’Ob")*adb).

9* is the formal adjoint of 8 : Ho — H10).

v
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» Flat Dolbeault Laplacian:
A = 8*8 = 5% + 27’1(5152 + ‘7’|26§

For 7 = i, we get
A =67 465,
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Conformal perturbation of the metric

> Fix a Weyl factor: h = h* € Ag°. Replace ¢g by

pla) = po(ae™™).

> o is a KMS state
p(ab) = o(bAa)),
with modular automorphism
A(a) = oi(a) = e M ael,

and modular group

» Warning: A and A are very different operators!
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Curved Laplacian

» Hilbert space H, = GNS completion of Ay under

p(a) = polae™).

> Let O, = 01 + 762 : Hy — HEO) It has an adjoint
0 = Ry20" : HY — 1,
» Curved Laplacian

N =850, Hy — He.
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A Spectral Triple (A3°,H, D)

H=H, ®H,

a»—><a O):H—>H,
0 a

0 o
e © .
D.<aw 0).71%%,

Dy =0 =01+ 702 : Hy — HIO,
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Anti-Unitary Equivalence of the Laplacians

D? = ( 3w0‘9¢ 8@08; ) tHe @ HEY - H, @ HEO.

Lemma: Let
k=el/2,

We have

0504 My — My ~ kOOk : Ho — Ho,

0,05 : HPO 5 HO o G20 HOO) 5 (0,

(The Tomita anti-unitary map J is used.)
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Conformal Geometry of T% with 7=
(Cohen-Connes, late 80’s)

Let
AM <A< A3 < be the eigenvalues of 0,0,
and
C(s) = Z)\j_s, R(s) > 1.
Then

¢(0)+1=

(F(A)(61(e"?)) 61(e"2)) + o (F(A)(2(e"/2)) 52 (e/?)),

where

flu) = éu_l/Q_%+£1(u)_2(1+U1/2)£2(u)+(1+u1/2)2£3(u),
Lo (u) = (—=1)™(u — 1)~ (m+D (logu _ i(_l)ﬁlu)

j=1 J
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The Gauss-Bonnet theorem for T

Theorem. (Connes-Tretkoff; Fathizadeh-Kh.) For any 6 € R,
complex parameter 7 € C \ R and Weyl conformal factor e, h =
h* € A%°, we have

¢(0)+1=0.
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Final Part of the Proof

S

+27§?T()T) ©o (K(V)((Sl(g)) 52(2)>+2§}(%S—) “o (K(V)(éz(g)) 51(g)>,
where
K(x) = — (3z — 3sinh (%) — SSin};g) +sinh (22)) csch® (2)

is an odd entire function, and V = log A.



a3 2325

K(z) —%Jr 5910~ erO(:cG).
1o
osl.
Ty _ 5 10
sl
1ol




Scalar curvature for Ay

» The scalar curvature of the curved nc torus (Tz,T, k) is the
unique element R € A3° satisfying

Trace (aA™%)|,_, + Trace (aP) = t(aR), Ya € Ag°

where P is the projection onto the kernel of A.

> In practice this is done by finding an asymptotic expansin for

the kernel of the operator ae 12,

Trace(a Z Bn(a,D*)t =, a€ Ay.
n>0

using Connes' pseudodifferential calculus for nc tori. A good
pseudo diff calculus for general nc spaces is still illusive.
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Final Formula for the Scalar Curvature of T3

Theorem. (Connes-Moscovici; Fathizadeh-Kh.) Up to an overall
factor of % R is equal to

RV +2m () 4 12 53(2)
(9, 9) (51 4 B e (D), s

HW(V,V) (3(7) [51(2),52(2)1).
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1 _ sinh(z/2)
R _ 2 T
1) = e/
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RQ(S, t) =

(14-cosh((s+t)/2))(—t(s+t) cosh s+s(s+t) cosh t—(s—t)(s+t+sinh s+sinh t—sinh(s+t

st(s+t) sinh(s/2) sinh(t/2) sinh?((s+t)/2)
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Wi(s,t) =

(—s —t+tcosh s+ scosht + sinh s + sinh ¢ — sinh(s + t))

stsinh(s/2) sinh(¢/2) sinh((s 4 t)/2)




Noncommutative 4-Torus T}

» Complex Structure on T
a - a1 5> 82,

1 )
61 = 5 ((51 — 1(53),

= 1
01 = 5 (51 =+ iég),

0=019 52,
1
82 = 5 ((52 — 7,54),
_ 1 )
Op = ) (62 +id4



Conformal perturbation of the metric

Let h = h* € C°°(T}) and replace the trace ¢y by
¢ :C(T3) — C,

v(a) := gola e_zh), a € C(Tp).

@ is a KMS state with the modular group
oi(a) = eth g e~ 2ith, a € O(Tp),
and the modular automorphism
Aa) :=05(a) = e " ae?, a € C(Tp).

o(ab) = p(bA(a)), a,b € C(Tp).
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Perturbed Laplacian on T}

_ 3. 1,0 0,1
d=0®0:H, = HIO o HOY,
A, = d*d.

Remark. If h =0 then ¢ = ¢ and
Ny =07+ 035 + 03 + 05 = 9%0

(the underlying manifold is Kahler).
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Scalar Curvature for T}

It is the unique element R € C°°(T}) such that
Ress—1(u(s) = po(a R), a € C*(Ty),

where
Ca(s) := Trace(a A*), R(s) > 0.
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Final Formula for the Scalar Curvature of T}

Theorem. (Fathizadeh-Kh.) We have

4
J‘k 52 hH(V,V) §i(h)2 |
where
V(a) = [~h,a], [(AS O(T4)
o= g
H(s,t) = e (e =) s (e - D4 (e - DB+ D)

Ast(s+1)



12

s3

48Jr

st s°

240 1440

+O(56).
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l 5 ¢t t2

H(s,t) = (i+24+0(t3)) +5<2416+80+O(t3))

2 —i ﬁ,i 3 3
s ( 12 7210 144+O(t)>+0(5)-




e=2 (ef —1)°
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1 S 752 s3 315t s°
= — - _ - - O 6 .
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e 5 P
-05}+
=10+
,1.5,
20+

-25




—4s —3e " * +e®+2

82 83

S
6 18 T120 1210 "

36

36



