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C0(X )-algebras

Definition (Kasparov)
Let X be a locally compact Hausdorff space and A a C*-algebra. If there
exists a ∗-homomorphism µA : C0(X )→ ZM(A) with the property that
µA(C0(X )) · A is dense in A, we say that the triple (A,X , µA) is a
C0(X )-algebra .

For f ∈ C0(X ), we will write f · for µA(f ).
For x ∈ X , define

I C0,x(X ) = {f ∈ C0(X ) : f (x) = 0}, and note that C0,x(X ) · A is a
closed two-sided ideal of A,

I Ax =
A

C0,x(X ) · A
the quotient C∗-algebra, and

I πx : A→ Ax the quotient homomorphism.
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C0(X )-algebras and C*-bundles

We regard A as an algebra of sections of
∐

x∈X Ax , identifying each
a ∈ A with â : X →

∐
x∈X Ax , where

â(x) = πx(a)

for all x ∈ X .

For all a ∈ A, we have

I ‖a‖ = supx∈X ‖πx(a)‖,
I the function X → R+, x 7→ ‖πx(a)‖ is upper-semicontinuous, and

vanishes at infinity on X .

Thus, we think of a C0(X )-algebra as the algebra of sections (vanishing
at infinity) of a C*-bundle over X .
If for all a ∈ A, the norm functions x 7→ ‖πx(a)‖ are continuous on X ,
then we say that (A,X , µA) is a continuous C0(X )-algebra.
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C0(X )-algebras and C*-bundles

Interest in C0(X )-algebras and C*-bundles: to decompose the study of a
given C*-algebra A into that of

I the fibre algebras Ax ,

I the behaviour of A as an algebra of sections of
∐

x∈X Ax .

e.g. every irreducible representation of a C0(X )-algebra A is lifted from a
fibre Ax for some x ∈ X .

Question: For two C*-algebras A and B, let A⊗ B denote their minimal
tensor product. Given a C0(X )-algebra structure on A and a
C0(Y )-algebra structure on B, what can be said about A⊗ B as a
C0(X × Y )-algebra?
Related question: ideal structure of A⊗ B?
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Ideals of A⊗ B

If I / A and J / B, let qI : A→ A/I and qJ : B → B/J be the quotient
maps. Then qI � qJ : A� B → (A/I )� (B/J) has

ker(qI � qJ) = I � B + A� J,

which, by injectivity, has closure

I ⊗ B + A⊗ J / A⊗ B.

Extending qI � qJ to qI ⊗ qJ : A⊗ B → (A/I )⊗ (B/J) gives a closed
two-sided ideal

ker(qI ⊗ qJ) / A⊗ B.

Clearly
ker(qI ⊗ qJ) ⊇ I ⊗ B + A⊗ J.

but this inclusion may be strict.
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The fibrewise tensor product

I Let (A,X , µA) be a C0(X )-algebra and (B,Y , µB) a C0(Y )-algebra,
and denote by πx : A→ Ax and σy : B → By the quotient
∗-homomorphisms, where x ∈ X , y ∈ Y .

I We get ∗-homomorphisms πx ⊗ σy : A⊗ B → Ax ⊗ By ,

I Hence we may regard A⊗ B as an algebra of sections of∐
{Ax ⊗ By : (x , y) ∈ X × Y }, where c ∈ A⊗ B is identified with

ĉ : X × Y →
∐
{Ax ⊗ By : (x , y) ∈ X × Y }

ĉ((x , y)) = (πx ⊗ σy )(c).

I This construction gives a C*-bundle decomposition of A⊗ B
(Kirchberg & Wassermann).
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A⊗ B as a C0(X × Y )-algebra

Since C0(X )⊗ C0(Y ) ≡ C0(X × Y ) and
ZM(A)⊗ ZM(B) ⊆ ZM(A⊗ B), we get a ∗-homomorphism

µA⊗µB : C0(X×Y ) = C0(X )⊗C0(Y )→ ZM(A)⊗ZM(B) ⊆ ZM(A⊗B).

The triple (A⊗ B,X × Y , µA ⊗ µB) is then a C0(X × Y )-algebra.
For (x , y) ∈ X × Y , it can be shown that

C0,(x,y)(X × Y ) · (A⊗ B) = (C0,x(X ) · A)⊗ B + A⊗ (C0,y (Y ) · B)

Hence the fibre algebras of (A⊗ B,X × Y , µA ⊗ µB) are given by

(A⊗ B)(x,y) =
A⊗ B

ker(πx)⊗ B + A⊗ ker(σy )

6= Ax ⊗ By ,

in general.
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Continuity of the fibrewise tensor product

Clearly we have

(A⊗ B)(x,y) ≡ Ax ⊗ By

⇔ ker(πx)⊗ B + A⊗ ker(σy ) = ker(πx ⊗ σy ). (FX ,Y )

Theorem ( Kirchberg & Wassermann)
Let (A,X , µA) be a continuous C0(X )-algebra and (B,Y , µB) a
continuous C0(Y )-algebra. Then the norm functions

(x , y) 7→ ‖(πx ⊗ σy )(c)‖

are continuous on X × Y for all c ∈ A⊗ B if and only if (FX ,Y ) holds.

Note that if (FX ,Y ) holds, then this also implies that the
C0(X × Y )-algebra (A⊗ B,X × Y , µA ⊗ µB) is continuous.
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Continuity of the C0(X × Y )-algebra A⊗ B

By contrast, we have shown that there exist (A,X , µA) and (B,Y , µB),
both continuous, such that

I the fibrewise tensor product of (A,X , µA) and (B,Y , µB) is
discontinuous, but

I the C0(X × Y )-algebra (A⊗ B,X × Y , µA ⊗ µB) is continuous.

I Let A =
∏

n≥1 Mn(C), then A defines a continuous C (βN)-algebra,
with fibres An = Mn(C) for n ∈ N.

I B = B(H) and Y = {y} a one-point space, so that B is trivially a
continuous C (Y )-algebra.

I Then (A⊗ B, βN, µA ⊗ 1) is a continuous C (βN)-algebra, but there
is p ∈ βN\N such that

I (A⊗ B)p 6= Ap ⊗ B (i.e. property (FX ,Y ) fails) and
I p 7→ ‖(πp ⊗ id)(c)‖ is discontinuous at p for some c ∈ A⊗ B, hence

the fibrewise tensor product is a discontinuous C*-bundle.

I In fact this occurs whenever B is an inexact C*-algebra.
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Property (F)

I Let A and B be C*-algebras. If for all ideals I / A and J / B we have

ker(qI ⊗ qJ) = I ⊗ B + A⊗ J, (F)

then A⊗ B is said to satisfy Tomiyama’s property (F).

I Given (A,X , µA) and (B,Y , µB), (F )⇒ (FX ,Y ), which in turn
implies

I (A⊗ B,X × Y , µA ⊗ µB) has fibres Ax ⊗ By , and
I if A and B are continuous then so is A⊗ B.

I A is exact iff A⊗ B satisfies (F ) for all B.

I If (A,X , µA) is continuous and A exact, then
(A⊗ B,X × Y , µA ⊗ µB) is continuous whenever (B,Y , µB)
continuous.
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Continuity and exactness

Theorem (M.)
Let (A,X , µA) be a continuous C0(X )-algebra. TTFAE:

(i) A is exact,

(ii) for every continuous C0(Y )-algebra B, the C0(X × Y )-algebra
(A⊗ B,X × Y , µA ⊗ µB) is continuous.

Analogous result for the fibrewise tensor product due to Kirchberg and
Wassermann: A exact ⇔ fibrewise tensor product continuous for all B.

ker(πx)⊗ B + A⊗ ker(σy ) = ker(πx ⊗ σy ). (FX ,Y )

By contrast, given continuous (A,X , µA) and (B,Y , µB), we have

I fibrewise tensor product of A and B continuous ⇔ (FX ,Y ) holds,

I (FX ,Y ) holds ⇒ (A⊗ B,X × Y , µA ⊗ µB) continuous, but

I (A⊗ B,X × Y , µA ⊗ µB) continuous 6⇒ (FX ,Y ) holds.
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Glimm ideals

Let A be a C*-algebra, and Ẑ the maximal (primitive) ideal space of
ZM(A), so that we have an isomorphism θA : C (Ẑ ) ≡ ZM(A).

I Note that any C*-algebra A defines a C (Ẑ )-algebra (A, Ẑ , θA).

I For p ∈ Ẑ , denote by Gp the ideal of A given by

Gp = {f ∈ C (Ẑ ) : f (p) = 0} · A.

Define the space of Glimm ideals of A via

Glimm(A) = {Gp : p ∈ Ẑ ,Gp 6= A},

with subspace topology inherited from Ẑ .

I If Glimm(A) is locally compact then A is a C0(Glimm(A))-algebra.

I For a locally compact Hausdorff space X , a C*-algebra A is a
C0(X )-algebra iff there exists a continuous map Glimm(A)→ X .

Remark: Glimm(A) may be constructed from the topological space
Prim(A) of primitive ideals of A (with the hull kernel topology) alone; no
need for multiplier algebras.
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I For p ∈ Ẑ , denote by Gp the ideal of A given by
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Let A be a C*-algebra, and Ẑ the maximal (primitive) ideal space of
ZM(A), so that we have an isomorphism θA : C (Ẑ ) ≡ ZM(A).
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I For p ∈ Ẑ , denote by Gp the ideal of A given by
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Characterisation of Glimm(A⊗ B)

Theorem (M.)
Let A and B be C∗-algebras. Then the map

Glimm(A)×Glimm(B) → Glimm(A⊗ B)

(Gp,Gq) 7→ Gp ⊗ B + A⊗ Gq

is an open bijection

, which is a homeomorphism if

(i) A is σ-unital and Glimm(A) locally compact (in particular if A
unital), or

(ii) A is a continuous C0(Glimm(A))-algebra.

Remarks:

1. In the case that A⊗ B satisfies property (F), the ‘open bijection’
part was shown by Kaniuth.

2. In general, the topology on Glimm(A⊗ B) depends only on the
product space Prim(A)× Prim(B).
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Exactness and Glimm ideals

Theorem (M.)
For a C∗-algebra A, the following are equivalent:

(i) A is exact,

(ii) For every (separable, unital) C∗-algebra B and q ∈ Glimm(B), the
sequence

0 // A⊗ Gq
id⊗ι // A⊗ B

id⊗σq// A⊗ (B/Gq) // 0

is exact, where σq : B → B/Gq is the quotient map, (i.e.
A⊗ Gq = ker(id⊗ σq)).

(iii) For every C∗-algebra B and (p, q) ∈ Glimm(A)×Glimm(B), we
have

A⊗ Gq + Gp ⊗ B = ker(πp ⊗ σq),

with πp : A→ A/Gp, σq : B → B/Gq the quotient maps.
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C0(Glimm(A))-representations

If Prim(A) is Hausdorff in the hull-kernel topology, then

I Prim(A) = Glimm(A) as sets of ideals and topologically, and

I A is canonically a continuous C0(Prim(A))-algebra, with simple
fibres given by the primitive quotients of A.

Definition (Archbold & Somerset)
A separable C*-algebra A is called quasi-standard if

I (A,Glimm(A), θA) is a continuous C0(Glimm(A))-algebra, and

I there is a dense subset D ⊆ Glimm(A) with Gp primitive for all
p ∈ D.

Examples of quasi-standard C*-algebras: all von Neumann algebras, local
multiplier algebras, and many group C*-algebras.



C0(Glimm(A))-representations

If Prim(A) is Hausdorff in the hull-kernel topology, then

I Prim(A) = Glimm(A) as sets of ideals and topologically, and

I A is canonically a continuous C0(Prim(A))-algebra, with simple
fibres given by the primitive quotients of A.

Definition (Archbold & Somerset)
A separable C*-algebra A is called quasi-standard if

I (A,Glimm(A), θA) is a continuous C0(Glimm(A))-algebra, and

I there is a dense subset D ⊆ Glimm(A) with Gp primitive for all
p ∈ D.

Examples of quasi-standard C*-algebras: all von Neumann algebras, local
multiplier algebras, and many group C*-algebras.



C0(Glimm(A))-representations

If Prim(A) is Hausdorff in the hull-kernel topology, then

I Prim(A) = Glimm(A) as sets of ideals and topologically, and

I A is canonically a continuous C0(Prim(A))-algebra, with simple
fibres given by the primitive quotients of A.

Definition (Archbold & Somerset)
A separable C*-algebra A is called quasi-standard if

I (A,Glimm(A), θA) is a continuous C0(Glimm(A))-algebra, and

I there is a dense subset D ⊆ Glimm(A) with Gp primitive for all
p ∈ D.

Examples of quasi-standard C*-algebras: all von Neumann algebras, local
multiplier algebras, and many group C*-algebras.



Classes of Dauns-Hofmann representations

We have the following relations:

{ C∗-algebras A with Prim(A) Hausdorff }

= { continuous C0(Prim(A))-algebras }

( { quasi-standard C*-algebras A}

( { continuous C0(Glimm(A))-algebras }

( { C (Ẑ )-algebras }

= { all C*-algebras }.

Question: are these classes closed under tensor products?
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= { all C*-algebras }.

Question: are these classes closed under tensor products?



Characterisation of exactness

Theorem (M.)
Let A be a C∗-algebra.

(i) If (A,Glimm(A), θA) is a continuous C0(Glimm(A))-algebra, then A
is exact ⇔ for all C∗-algebras B with (B,Glimm(B), θB)
continuous, the C0(Glimm(A⊗ B))-algebra
(A⊗ B,Glimm(A⊗ B), θA ⊗ θB) is continuous,

(ii) If A is quasi-standard, then A is exact ⇔ A⊗B is quasi standard for
all quasi-standard C∗-algebras B,

(iii) If Prim(A) is Hausdorff, then A is exact ⇔ Prim(A⊗ B) is
Hausdorff for all C∗-algebras B with Prim(B) Hausdorff.

Theorem
Let A be a unital quasi-standard C*-algebra. Then A is nuclear
⇔ A⊗max B is quasi-standard for all quasi-standard C*-algebras B.
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