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A
> A = m the quotient C*-algebra, and

> 71, : A — A the quotient homomorphism.
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ac Awith 3: X — J], cx Ax, where

a(x) = mx(a)

for all x € X.
For all a € A, we have

> all = supex lImx(a)ll,
» the function X — R, x — ||mx(a)|| is upper-semicontinuous, and
vanishes at infinity on X.

Thus, we think of a Cy(X)-algebra as the algebra of sections (vanishing
at infinity) of a C*-bundle over X.

If for all a € A, the norm functions x — ||7x(a)|| are continuous on X,
then we say that (A, X, ua) is a continuous Co(X)-algebra.



Co(X)-algebras and C*-bundles

Interest in Co(X)-algebras and C*-bundles: to decompose the study of a
given C*-algebra A into that of

> the fibre algebras A,

> the behaviour of A as an algebra of sections of [, ., Ax



Co(X)-algebras and C*-bundles

Interest in Co(X)-algebras and C*-bundles: to decompose the study of a
given C*-algebra A into that of

> the fibre algebras A,

> the behaviour of A as an algebra of sections of [, ., Ax

e.g. every irreducible representation of a Cy(X)-algebra A is lifted from a
fibre A, for some x € X.



Co(X)-algebras and C*-bundles

Interest in Co(X)-algebras and C*-bundles: to decompose the study of a
given C*-algebra A into that of

> the fibre algebras A,
> the behaviour of A as an algebra of sections of [, ., Ax

e.g. every irreducible representation of a Cy(X)-algebra A is lifted from a
fibre A, for some x € X.

Question: For two C*-algebras A and B, let A® B denote their minimal
tensor product. Given a Cy(X)-algebra structure on A and a

Co(Y)-algebra structure on B, what can be said about A® B as a
Co(X x Y)-algebra?



Co(X)-algebras and C*-bundles

Interest in Co(X)-algebras and C*-bundles: to decompose the study of a
given C*-algebra A into that of

> the fibre algebras A,
> the behaviour of A as an algebra of sections of [, ., Ax

e.g. every irreducible representation of a Cy(X)-algebra A is lifted from a
fibre A, for some x € X.

Question: For two C*-algebras A and B, let A® B denote their minimal
tensor product. Given a Cy(X)-algebra structure on A and a
Co(Y)-algebra structure on B, what can be said about A® B as a

Co(X x Y)-algebra?

Related question: ideal structure of A® B?
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If I9<Aand J<B,let qi: A— A/l and q; : B — B/J be the quotient
maps. Then q;© q,: A® B — (A/l)®(B/J) has

ker(qi ©q))=10B+A®J,
which, by injectivity, has closure

I B+ARJ<AR® B.

Extending q; © g, to ¢ ® q,: A® B— (A/l) ® (B/J) gives a closed
two-sided ideal
ker(gqr ® q;) <A ® B.

Clearly
ker(q/ @ q)) 2 1@ B+A®J.

but this inclusion may be strict.
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> Let (A, X,pa) be a Go(X)-algebra and (B, Y, ug) a Go(Y)-algebra,
and denote by 7, : A = A, and o, : B — B, the quotient
*-homomorphisms, where x € X,y € Y.

» We get x-homomorphisms 7, ® 0, : AQ B = A, ® By,

» Hence we may regard A® B as an algebra of sections of
[{A«® By : (x,¥) € X x Y}, where ¢ € A® B is identified with

e:XxY —= JH{A®B,:(x,y)e XxY}
() = (m@ay)(c).

» This construction gives a C*-bundle decomposition of A® B
(Kirchberg & Wassermann).
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in general.
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Clearly we have
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Theorem ( Kirchberg & Wassermann)

Let (A, X, pia) be a continuous Co(X)-algebra and (B, Y, ug) a
continuous Co(Y)-algebra. Then the norm functions

(%, y) = [l(m @ oy ) ()|

are continuous on X x Y for all c € A® B if and only if (Fx y) holds.

Note that if (Fx,y) holds, then this also implies that the
Go(X x Y)-algebra (A® B, X X Y, ua ® pug) is continuous.
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Continuity of the Co(X x Y)-algebra A® B

By contrast, we have shown that there exist (A, X, ua) and (B, Y, ug),
both continuous, such that

>

the fibrewise tensor product of (A, X, ua) and (B, Y, ug) is
discontinuous, but

the Go(X x Y)-algebra (A® B, X X Y, ua ® upg) is continuous.
Let A=[],~; Mn(C), then A defines a continuous C(5N)-algebra,
with fibres A, = M,(C) for n € N.

B = B(H) and Y = {y} a one-point space, so that B is trivially a
continuous C(Y)-algebra.

Then (A® B, BN, ua ® 1) is a continuous C(SN)-algebra, but there
is p € SN\N such that
» (A® B), # A, ® B (i.e. property (Fx,y) fails) and
> p— ||(mp ®1id)(c)]| is discontinuous at p for some ¢ € A® B, hence
the fibrewise tensor product is a discontinuous C*-bundle.

In fact this occurs whenever B is an inexact C*-algebra.
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Property (F)

» Let A and B be C*-algebras. If for all ideals / <A and J < B we have
ker(q1 ® q)) =1 @ B+ A® J, (F)

then A® B is said to satisfy Tomiyama's property (F).
> Given (A, X, pa) and (B, Y, ug), (F) = (Fx,y), which in turn
implies
» (AR B,X X Y, ua® pug) has fibres Ax ® By, and
> if A and B are continuous then so is A® B.

> Alis exact iff A® B satisfies (F) for all B.

> If (A, X, a) is continuous and A exact, then
(A® B,X X Y, ua ® pg) is continuous whenever (B, Y, ug)
continuous.
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Continuity and exactness

Theorem (M.)
Let (A, X, ua) be a continuous Co(X)-algebra. TTFAE:
(i) A is exact,
(ii) for every continuous Co(Y)-algebra B, the Co(X x Y)-algebra
(A® B,X X Y, ua® pp) is continuous.

Analogous result for the fibrewise tensor product due to Kirchberg and
Wassermann: A exact < fibrewise tensor product continuous for all B.

ker(my) ® B+ A® ker(o,) = ker(m, ® 0,). (Fx.v)

By contrast, given continuous (A, X, ua) and (B, Y, ug), we have
» fibrewise tensor product of A and B continuous < (Fx. y) holds,
» (Fx,y) holds = (A® B, X X Y, ua ® ug) continuous, but
» (AR B,X X Y,ua® pg) continuous % (Fx y) holds.
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Glimm ideals

Let A be a C*-algebra, and Z the maximal (primitive) ideal space of

N

ZM(A), so that we have an isomorphism 84 : C(Z) = ZM(A).
> Note that any C*-algebra A defines a C(Z)-algebra (A, Z,04).
» For p € Z, denote by G, the ideal of A given by

G,={feC(2): f(p)=0}-A.
Define the space of Glimm ideals of A via
Glimm(A) = {G, : p€ Z, G, # A},

with subspace topology inherited from Z.
> If Glimm(A) is locally compact then A is a Co(Glimm(A))-algebra.

» For a locally compact Hausdorff space X, a C*-algebra A is a
Co(X)-algebra iff there exists a continuous map Glimm(A) — X.

Remark: Glimm(A) may be constructed from the topological space
Prim(A) of primitive ideals of A (with the hull kernel topology) alone; no
need for multiplier algebras.
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Characterisation of Glimm(A ® B)

Theorem (M.)
Let A and B be C*-algebras. Then the map

Glimm(A) x Glimm(B) — Glimm(A® B)
(GpyGg) — G, @B+ A® G,

is an open bijection , which is a homeomorphism if

(i) A is o-unital and Glimm(A) locally compact (in particular if A
unital), or

(i) Ais a continuous Co(Glimm(A))-algebra.

Remarks:

1. In the case that A ® B satisfies property (F), the ‘open bijection’
part was shown by Kaniuth.



Characterisation of Glimm(A ® B)

Theorem (M.)
Let A and B be C*-algebras. Then the map

Glimm(A) x Glimm(B) — Glimm(A® B)
(GpyGg) — G, @B+ A® G,

is an open bijection , which is a homeomorphism if
(i) A is o-unital and Glimm(A) locally compact (in particular if A
unital), or
(i) Ais a continuous Co(Glimm(A))-algebra.

Remarks:
1. In the case that A ® B satisfies property (F), the ‘open bijection’
part was shown by Kaniuth.

2. In general, the topology on Glimm(A ® B) depends only on the
product space Prim(A) x Prim(B).
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Theorem (M.)
For a C*-algebra A, the following are equivalent:
(i) Ais exact,

(ii) For every (separable, unital) C*-algebra B and q € Glimm(B), the
sequence

i id®o,
0 = A®G, % A B A% (B/G,) —=0

is exact, where o4 : B — B/Gq is the quotient map, (i.e.
AR Gy = ker(id ® 0q)).
(iii) For every C*-algebra B and (p, q) € Glimm(A) x Glimm(B), we
have
AR Gg+ G, @ B = ker(mp, ® 0q),

with mp : A — A/Gp,04 : B — B/Gq the quotient maps.
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Co(Glimm(A))-representations

If Prim(A) is Hausdorff in the hull-kernel topology, then
» Prim(A) = Glimm(A) as sets of ideals and topologically, and

» Ais canonically a continuous Co(Prim(A))-algebra, with simple
fibres given by the primitive quotients of A.

Definition (Archbold & Somerset)
A separable C*-algebra A is called quasi-standard if
> (A, Glimm(A), 04) is a continuous Co(Glimm(A))-algebra, and
> there is a dense subset D C Glimm(A) with G, primitive for all
peD.

Examples of quasi-standard C*-algebras: all von Neumann algebras, local
multiplier algebras, and many group C*-algebras.
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We have the following relations:

N

N

N

{ C*-algebras A with Prim(A) Hausdorff }
{ continuous Co(Prim(A))-algebras }

{ quasi-standard C*-algebras A}

{ continuous Co(Glimm(A))-algebras }

{ C(Z)-algebras }

{ all C*-algebras }.



Classes of Dauns-Hofmann representations

We have the following relations:
{ C*-algebras A with Prim(A) Hausdorff }

= { continuous Co(Prim(A))-algebras }

€ { quasi-standard C*-algebras A}
C  { continuous Co(Glimm(A))-algebras }
¢ { C(2)-algebras }

= { all C*-algebras }.

Question: are these classes closed under tensor products?
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Characterisation of exactness

Theorem (M.)
Let A be a C*-algebra.

(i) If (A, Glimm(A), 04) is a continuous Co(Glimm(A))-algebra, then A
is exact < for all C*-algebras B with (B, Glimm(B), 0g)
continuous, the Co(Glimm(A ® B))-algebra
(A® B,Glimm(A® B),0a ® 0g) is continuous,

(ii) If A is quasi-standard, then A is exact & A® B is quasi standard for
all quasi-standard C*-algebras B,

(i) If Prim(A) is Hausdorff, then A is exact < Prim(A ® B) is
Hausdorff for all C*-algebras B with Prim(B) Hausdorff.

Theorem
Let A be a unital quasi-standard C*-algebra. Then A is nuclear
< A ®max B is quasi-standard for all quasi-standard C*-algebras B.



