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Motivation: Quantum Foundations

Quantum mechanics has unfamiliar features

@ Superposition, entanglement, collapse under measurement,
tensor-product structure of Hilbert space,
non-locality, contextuality, negative (quasi-)probability . . .

@ Which of these concepts are “truly quantum” and which are
“merely classical?

@ Can this cconceptual distinction help predict the unique
capabilities of the quantum world?



Motivation:
From Quantum Foundations to Quantum Information

The Best Information is Quantum Information

o Clear operational advantages of quantum information: CHSH
games, Shor's algorithm

@ Which features of quantum theory are necessary and sufficient
resources for these operational advantages?



Motivation: Quantum Information

Which quantum features power quantum computation?

@ Non-locality is the fundamental quantum resource for
communication under the LOCC restriction

@ Quantum resources (capabilities) that are necessary for power
of quantum computation are less clear

e MBQC vs standard circuit model vs adiabatic QC vs DQC1
model...

Both fundamental and practical:
@ Which quantum processes/algorithms admit an efficient
classical simulation?

o What experimental capabilities are needed for exponential
quantum speed-up?



Background: Discrete Wigner function

Main Tool: the Wootters/Gross DWF

@ A quasi-probability representation introduced by Bill Wootters
(1987) and developed by David Gross (2005)

@ A discrete analog of the Wigner function (DWF)

@ This DWF has nice group-covariant properties relevant to
quantum computation

@ This DWF is well-defined only for odd-prime dimensional
quantum systems:
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Background: Discrete Wigner function

Main Tool: the Wootters/Gross DWF

@ A quasi-probability representation introduced by Bill Wootters
(1987) and developed by David Gross (2005)

@ A discrete analog of the Wigner function (DWF)

@ This DWF has nice group-covariant properties relevant to
quantum computation

@ This DWF is well-defined only for odd-prime dimensional
quantum systems:
o qudits (for d # 2) or qupits ( for p # 2)
e ...maybe “quopits’?
e as only even prime, 2 is the oddest prime of them all!



Outline of Results: Quantum Foundations

o We identify the full set of non-negative quantum states +
transformations + measurements under this DWF

o these define an operational subtheory of quantum theory
@ This a large, convex subtheory of quantum theory with

e superposition, entanglement (without non-locality), collapse
under measurement, tensor-product structure of Hilbert space

e quantum teleportation, the no-cloning principle and other
so-called “quantum” phenomena
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Outline of Results: Quantum Foundations

o We identify the full set of non-negative quantum states +
transformations + measurements under this DWF

o these define an operational subtheory of quantum theory
@ This a large, convex subtheory of quantum theory with

e superposition, entanglement (without non-locality), collapse
under measurement, tensor-product structure of Hilbert space

e quantum teleportation, the no-cloning principle and other
so-called “quantum” phenomena

The non-negative DWF for this subtheory corresponds to:

@ a classical probabilistic model for quopit systems

@ a local hidden variable model for entangled quopits
@ a maximal classical subtheory for quopit systems:

o negativity of discrete Wigner function occurs if and only if the
quantum state violates a contextuality inequality
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Outline of Results:

from Quantum Foundations to Quantum Information

This is all interesting but how is it useful?

We show that the Wootters/Gross DWF provides:

@ an efficient simulation scheme for a class of quantum circuits —
extending Gottesman-Knill to (mixed) non-stabilizer states

@ a direct link between contextuality and the power of quantum
computation:

@ a quantum state enables universal quantum computation only
if it violates a contextuality inequality

@ the quantum “Mana": the amount of negativity/contextuality
is a quantitive resource for universal quantum computation




Quasi-Probability Representations

The most well-known QPR is the Wigner function
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o Real-valued function on classical phase space (eg, R? for 1
particle in 1d).

@ An equivalent formulation of quantum mechanics:

Pr(qg € A) / dq / dp/ﬂ‘"gne]r p)

@ Not unique! Other choices of QPR: P-representation,
Q-representation, etc . ..



Quasi-Probability Representations
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° u},mgner(q, p) takes on negative values for some quantum

states.

@ Negativity and non-classicality: negativity of given state
depends on choice of QPR!

@ Can even choose a QPR for which all states are non-negative!



Freedom in choosing QPR

The Wigner function is a non-unique choice of QPRI

o (i) Phase space can be any set A, e.g., A = R? for Wigner
function.

o (ii) Linear map taking quantum states to real-valued functions
is non-unique.

o (iii) Linear map taking measurements to conditional
probabilities can be non-unique.




General Class of Quasi-probability Representations

Definition: A quasi-probability representation of QM:

Any pair of linear (affine) maps
Hp PP — Hp

Sk Ex — &k

with 1, : A = R and & : AxXK — R,
that reprodiuce the Born rule via the law of total probability

Pr(k) = Tr(Eep) = /A IE(N)ip(A)




Frames and Quasi-probability representations

The non-uniqueness of QPR is equivalent to choosing a frame and
a dual frame for the Hilbert space of linear operators

@ A frame of operators {F(\)} is just a spanning set*, viz. an
overcomplete basis, indexed by \ € A.

o A Hermitian frame {F(\)} and Hermitian dual frame {F*()\)}
define a QPR:

pp(A) = Tr(F(X)p)
§(A) = Tr(F*(M)p)

e Note: For any operator A, a dual frame satisfies
A= / dAF*(N)Tr(F(M)A)

Ref: C. Ferrie and J. Emerson (J. Phys. A, 2008)



Necessity of Negativity in any QPR

No-Go Theorem for a Fully Non-Negative Quasi-Probability

Representation:

@ All quantum states and measurements can not be represented
by non-negative functions in any QPR.

@ In other words: quantum theory is not a probability theory

@ Proof: a frame of non-negative operators can not have a dual
frame consisting of non-negative operators.

Refs:

C. Ferrie and J. Emerson (J. Phys. A, 2008);

C. Ferrie, R. Morris and J. Emerson, (Phys. Rev. A, 2010)
See also:

R. Spekkens (PRL, 2008).



Need to Motivate Choice of Quasi-Probability

Representation

Different sets of states and/or measurements are non-negative in
different QPRs

Key Idea

@ Align choice of frame and dual frame to reflect operational
restrictions!

e The Clifford/stabilizer subtheory: central to quantum error
correction and fault-tolerance

@ The stabilizer subtheory admits an efficient classical simulation
scheme (Gottesman-Knill theorem): no quantum speed-up.

@ In the Wootters/Gross DWF, the full Clifford subtheory is
non-negative (for quopits)



Slice of the Quantum State Space and Stabilizer Polytope
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Figure: Slice defined by fixing six entries of the Wigner function and
varying the remaining through their possible values to create the plot.



Clifford /Stabilizer Subtheory

@ Let p be a prime number and define the boost and shift
operators:

Xlj) = 1j+1 mod p)
. L 27i
Z|j) Wj), w=exp <p>

@ The Heisenberg-Weyl operators for odd prime dimension

Tiop) =@ 22°XP (a,b) € Zp x Zp, p#2

where Z,, are the integers modulo p.

@ For composite Hilbert space of n quopits:

Tah) = Tarby) @ Taab) @ T(anbn):



Clifford /Stabilizer Subtheory

e The Clifford operators are the unitaries that, up to a phase,
take the Heisenberg-Weyl operators to themselves, ie.

UeCy < Yudp,u' : UT,U" =exp(ip) T,

@ The set of such operators form the Clifford group C4 which is
a subgroup of U(d).

@ The pure stabilizer states for dimension d are
{150} ={Ul0): Ueld},

o The full set of stabilizer states is the convex hull of this set:
STAB (Hy) = {ae L(Hqg) : a_zp,\s sy}

where p; is some probability distribution.



The Wootters/Gross DWF for Odd Dimension

Choose a frame of phase space point operators

1
Ay = gzu: Tu, Au= TuAoT}.

@ The frame operators in dimension p” are n-fold tensor
products of single system frame operators.

@ There are d? such operators for d-dimensional Hilbert space,
corresponding to the d? phase space points u € A.

@ Let d = p" and p odd: the frame operators are Clifford
covariant: for U € Cy,

UALUT = Ay

o There is a rich (symplectic) structure at play (suppressed here).
o Key point: Cliffords are permutations on the phase space



Discrete Wigner Representation for Odd Dimension

@ The DWEF of a state is a QPR over A = Zp x 7y, ie., aset of
d x d points, where

1
=Tr(Aup),

Wp(u) =4

@ The DWEF for a quantum measurement operator Ej is then the
conditional (quasi-)probability function over A,

WEk(U) = Tr(AuEk).

@ Of course, the Born rule is reproduced by the law of total
probability

ZW u)We, (u) = Tr(pEx)



Example of Discrete Wigner Representation for Qutrits

Figure: Wigner representation of Figure: Wigner representation of
qutrit |0) state qutrit |0) — |1) state



Resources for Quantum Computation?
Some Candidates

e Entanglement? ... Provably necessary in circuit model, but
(largely) absent in DQC1.

@ Purity/Coherence/Superposition? ... Unclear.

@ Discord? ... Ok, probably not discord.

@ Negative Wigner function and contextuality? ... Yes!
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Resources for Quantum Computation?
Some Candidates

e Entanglement? ... Provably necessary in circuit model, but
(largely) absent in DQC1.

@ Purity/Coherence/Superposition? ... Unclear.

@ Discord? ... Ok, probably not discord.

@ Negative Wigner function and contextuality? ... Yes!

Quantum Resources

| A

Resources arise naturally under operational restrictions, e.g.,
fundamental or practical restrictions on the quantum formalism.

Quantum Resources from operational restrictions

Limitations of fault-tolerant stabilizer computation give a set of
resource-constraints for quantum computation!
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A transversal (and hence fault-tolerant) encoded gate set can not
be universal.




Resources for Fault Tolerance

Eastin-Knill, 2009

A transversal (and hence fault-tolerant) encoded gate set can not
be universal.

Fault Tolerance with Stabilizer Operations

@ Stabilizer operations are a typical choice of for fault tolerant
gates - they form a subgroup of the unitary group.

@ Stabilizer operations are not universal - this set is efficiently
simulatable by the Gottesman-Knill theorem.

@ This defines a natural restriction on the set of quantum
operations.

@ Thus an additional resource is needed for universal quantum
computation - consumption of resource states.




Magic State Computing (Bravyi, Kitaev 2005)

Magic State Model

@ Operational restriction: only stabilizer operations (states,
gates and projective measurement) can be realized

o Additional resource: preparation of non-stabilizer "magic"
state pg

<

Magic State Distillation

@ Convert several noisy magic states pr to produce a few very
pure magic states pr

@ Consume pure magic states pr to perform non-stabilizer
unitary gates (using only fault tolerant stabilizer operations)

V.




Magic State Computing (Bravyi, Kitaev 2005)

@ Operational restriction: only stabilizer operations (states,
gates and projective measurement) can be realized

o Additional resource: preparation of non-stabilizer "magic"
state pg

Magic State Distillation

@ Convert several noisy magic states pr to produce a few very
pure magic states pr

@ Consume pure magic states pr to perform non-stabilizer
unitary gates (using only fault tolerant stabilizer operations)

V.

An Open Question

Which non-stabilizer states promote stabilizer computation to
universal quantum computation? Can answer this using DWF!




Discrete Wigner Representation for Odd Dimension

@ Discrete Hudson's theorem (Gross, 2006): a pure state |S) has
positive representation if and only if it is a stabilizer state.
Hence for any state in STAB we know Tr(A,S) > 0 Vu.

@ Clifford unitaries act as permutations of phase space. This
means that if U is a Clifford then,

WUpUT(V) = WP(V/)a

for each point v.
© Hence Clifford operations preserve non-negativity.

@ Note: only a small subset of the possible permutations of
phase space correspond to Clifford operations.



Stabilizer Operations Preserve Positive Representation

Negative Wigner representation is a resource that can not be
created by stabilizer operations.

Proof

Let p € L(Cgyn) be an n qudit quantum state with positive Wigner
representation. Observe the following:

| A

@ UpUT is positively represented for any Clifford (stabilizer)
unitary U.

@ p® S is positively represented for any stabilizer state S.

@ state-update, MpM'/Tr (I\/IpMT), is positively represented for
any stabilizer projector M.

A




Positive Representation = Stabilizer State?

Do all non-stabilizer states have negative Wigner representation?




Stabilizer Polytope

Stabilizer Polytope

quantum states
bound magic states l

o Convex polytope with stabilizer states B

stabilizer states as vertices

@ Can be defined from set
of “facets”

Wigner Facets

The Wigner simplex has d?
facets = small subset of
stabilizer polytope facets

This is a cartoon.
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Magic States and Negative Quasi-Probability

Distillable Magic States for Odd Dimensional Qudits

@ There is a large class of non-stabilizer quantum states (bound
magic states) that are not useful for magic state distillation.

@ Hence negative quasi-probability is necessary condition for a
state to be distillable

@ Is the boundary for negativity also a boundary for
contextuality?




State-dependent contextuality

Use the graph-based contextuality formalism in Cabello, Severini
and Winter (2010):

o Consider a set of binary yes-no tests, which we quantum
mechanically represent by a set of rank-one projectors, I, with
eigenvalues A(M) € {1,0}.

o Compatible tests are those whose representative projectors
commute, and a context is a set of mutually compatible tests.

@ Commuting rank-1 projectors cannot both take on the value
+1 i.e., the respective propositions are mutually exclusive and
cannot both be answered in the affirmative.

@ These (mutual orthogonality) relations can be represented by a
graph I where connected vertices correspond to compatible
and exclusive tests.



State-dependent contextuality

@ Define an operator X = > Tl
@ Cabello, Severini and Winter (2010) show that

o The maximum classical (non-contextual) assignment is

(Zr) = (I
where «(T) is the independence number of the graph.

e An independent set of a graph is a set of vertices, no two of
which are adjacent. The independence number (') € N is the
size of the largest such set.

e The maximum quantum value

(Zr)ex = 9(T)
where (") € R is the Lovasz theta number which is the
solution of a certain semidefinite program.



Graph of Stabilizer Projectors

We construct a set of stabilizer projectors for a system of two
p-dimensional qudits such that:

<zt0t>max - P3 + 1

Let
Yot = Zsep + Xent = P ]I 2 — (A(O 0) QI )

@ Then for any state o € #H, we have
Tr [Tt (p®0)] > p* < Tr[Apop] <O.

o Let |v) = % we get

Tr [Apo)lv)vl] = -1,



Graph of Stabilizer Projectors

What about the maximal NCHV assignment of 0 and 1 to vertices
of the graph?

@ Via exhaustive numerical search for p = 3 and p = 5 we show
that
aMiot) = P = <Ztot>NCHV =p’

max

@ We conjecture this holds in general for all odd prime p.



Graph of Stabilizer Projectors

Hence for p = 3 and p = 5 and we conjecture for all odd p:

(Tiotymor . = P° < (Trot) o = P° + 1.
From the above it follows that:
o (i) a state is non-contextual if and only if it is positively
represented in the discrete Wigner function,

e (ii) maximally negative states exhibit the maximum possible
amount of contextuality



Magic State Computing (Bravyi, Kitaev 2005)

Magic State Model

@ Operational restriction: perfect stabilizer operations (states,
gates and projective measurement)

e Additional resource: preparation of non-stabilizer state pg

Magic State Distillation

@ Consume many resource states pgr to produce a few very pure
resource states o & [1)(1)|

@ Inject o = [1))(¢)| to perform non-stabilizer unitary gates (using
only fault tolerant stabilizer operations)




Importance of Efficiency

SEE

Fowler et al.? analyze the requirements to use Shor's algorithm to
factor a 2000 bit number using physical qubits with realistic error
rates?. Using a 2D surface code they find:

@ Approximately one billion physical qubits are required.

@ About 94% of these are used for magic state distillation.

“Fowler, Mariantoni, Martinis and Cleland (2012)
bphysical qubit error rate 0.1%, ancilla preparation error rate 0.5%




Main Result

Main Result: Magic Monotones

We identify and study two magic monotones:

o The (regularized) relative entropy of magic. This is most
interesting in the asymptotic regime.

@ The mana, a computable monotone based on the discrete
Wigner function defined for odd dimensional systems.

As a corollary we find explicit, absolute bounds on the efficiency of
magic state distillation.




Mana - Overview

@ Previous work: states with positive discrete Wigner function
are not distillable.

@ Positively represented states also not useful for quantum
computation.

@ Is the “amount” of negativity of the Wigner function
meaningful?

V.
Mana

@ The sum negativity snp is the sum of the negative entries of
the Wigner function of p

@ The mana is the additive variant of the sum negativity,
M(p) = log (2sn(p) + 1)




Mana - Definition

Magic Monotones

@ Mana
M(p) = log (2snp + 1)

S Ly
Wigner negativity Figure: Sum negativity = 3

The negativity of the DWF
gives a computable,
quantitative measure of
resource for universal quantum
computation.

Figure: Sum negativity = 2



Quantum Foundations

Quantum mechanics has unfamiliar features

@ Superposition, entanglement, collapse under measurement,
tensor product structure of Hilbert space, non-locality,
contextuality, negative (quasi-)probability . ..

Which of these concepts are truly quantum and which are classical?

o Classical concepts: superposition, entanglement, collapse
under measurement, tensor product structure of Hilbert space,

@ Quantum concepts: Non-locality, contextuality, negative
(quasi-)probability.



Summary and Open Questions

S B s o e

state distillation @ Should we compute with
o Negative Wigner function qudits (quopits)?
is a resource for FT @ Is contextuality sufficient
stabilizer computation for distillability?
@ Negative quasi-probability @ How to extend the QPR
and contextuality are approach to other
equivalent resources operational restrictions?

Related Results: Main Refs:
Veitch et al, NJP (2012)

° Extensmn OL i Veitch et al, arxiv:1307.7171
ottesman-fni Howard et al, forthcoming.

o Entanglement in a LHV




Entanglement from Epistemic Restriction

Entanglement without non-locality:

@ The two qutrit Bell state

_[00) + [11) + [22)

1B) 7

is an entangled stabilizer state

@ Its density operator does *not* admit a convex decomposition
into factored qutrit states

@ But under stabilizer measurements it can not exhibit any form
of contextuality

@ Morever, its discrete Wigner function must admit the
decomposition

Wigys| = 1P Wi @ WP



Entanglement from Epistemic Restriction

o Note that W/* and W come from forbidden regions of the
single-qutrit Wigner probability simplex — that is, W,A and Vl/,B
are not valid single qutrit quantum states

> oW oWy
l

&

e Entanglement arises naturally from the epistemic restriction,
i.e. from incompleteness of quantum states!



Extended Gottesman-Knill Theorem

Weak simulation protocol for all states inside and some mixed
states outside the stabilizer polytope!

@ Prepare p with positive representation
@ Act on input with Clifford Ur (corresponding to linear size F)

@ Perform measurement {Ex} with positive representation

Simulation Protocol

@ Sample phase space point (u, v) according to distribution
Wp(u, v)
o Evolve phase space point according to (u,v) — F~*(u, v)

@ Sample from measurement outcome according to W{Ek}(u, v)




Continuous Variable Simulation for Linear Optics

’ Odd Dimension ‘ Infinite Dimension ‘
Stabilizer Operations Linear Optics
Stabilizer States Gaussian States

Discrete Wigner Function | Wigner Function

Table: Comparison of Odd and Infinite Dimensional Formalisms

@ There exist mixed states with positive Wigner representation
that are not convex combinations of gaussian states (Brocker
and Werner, 1995)

e Computations using linear optical transformations and
measurements as well as preparations with positive Wigner
function can be efficiently classically simulated.

Ref: Veitch, Wiebe, Ferrie and Emerson, NJP 15, 013037 (2013)



