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Open quantum systems

• System + Environment models Hamiltonian

H = HS + HR + λV

– HS = diag(E1, . . . ,EN) system Hamiltonian (finite-dimensional)
– Environment a ‘heat bath’ of non-interacting Bosons (Fermions)

at thermal equilibrium (T = 1/β > 0) w.r.t. Hamiltonian

HR =
∑
k

ωka†kak

ωk dispersion relation
– Interaction constant λ, interaction operator

V = G ⊗
∑
k

(
gka†k + h.c .

)
G = G † acts on the system, gk ∈ C is a form factor.



• Schrödinger dynamics

ρtot(t) = e−itHρS ⊗ ρR eitH

ρS arbitrary system inital state, ρR thermal reservoir state

• Irreversible dynamical effects (in S or R) are visible in the limit of
continuous bath modes (e.g. thermodynamic limit: ∞ volume)

Examples: convergence to a final state, decoherence, loss of
entanglement, dissipation of energy into the bath

• The limits of: continuous modes, large time, small coupling,....
are not independent

• Our approach starts off with infinite-volume (true) reservoirs;
first we perform continuous mode limit, then we consider t →∞,
λ→ 0,....



The coupled infinite system

• Liouville representation (purification, GNS representation): view
density matrix as a vector in ‘larger space’ (ancilla)

◦ system state ρ =
∑

j pj |ψj〉〈ψj | → ΨS =
∑

j
√

pj ψj ⊗ ψj

◦ ∞-volume reservoir equilibrium state → ΨR

◦ Initial system-reservoir state: Ψ0 = ΨS ⊗ΨR

• Dynamics generated by self-adjoint Liouville (super-)operator L

Ψt = e−itLΨ0,

with
L = L0 + λV , L0 = LS + LR



Dynamics and spectrum of L = L0 + λV

• Guiding principle: spectral decomposition “ e−itL =
∑

j e
−itej Pj ”

spec(LS)

spec(LR)

λV
spec(L0) spec(L)

0 0

• Stationary states ←→ Null space (of L0, L)

– Non-interacting dynamics: multiple stationary states
|ϕj〉〈ϕj | ⊗ ρR

– Interacting dynamics: single stationary state
Equilibrum of system + reservoir under coupled dynamics



Resonances

Unstable eigenvalues become complex ‘energies’ = resonances =
eigenvalues of a spectrally deformed Liouville operator.

Spectral deformation:
Transformation U(θ), θ ∈ C → L(θ) = U(θ)LU(θ)−1

spec(L0)

0

Imθ > 0

spec(L0(θ))
∈ C

λV
continuous spectrum

γ ∼ Imθ

0

εj(λ)

spec(L(θ))

• ε0 = 0 is simple eigenvalue, Im εj(λ) ∝ λ2 > 0



Resonance representation of dynamics

• Spectral decomposition of L(θ)

eitL(θ) “ = ”
∑
j

eitεj Pj + O(e−γt)

• Dynamics of system-reservoir observables A

〈A〉t =
∑
j

eitεj Cj(A) + O(e−γt)

• Remainder decays more quickly than main term (γ > Imεj)

• εj and Cj calculable by perturbation theory in λ

• For observables A of system alone, remainder is O(λ2e−γt)

• Return to equilibrium. The coupled system approaches its joint
equilibrium state: limt→∞〈A〉t = C0(A).



Example: reduced dynamics of system

Two spins coupled to common and local reservoirs

Spin Hamiltonians B1,2σ
z
1,2

Interact.: energy exchange/dephasing: σx1,2/σz1,2⊗
∑

gk(a†k + ak)

• Dynamics of two-spin reduced state ρt

– Thermalization (convergence of diagonal of ρt): rate depends
on exchange interaction only

– Decoherence (decay of off-diagonals): rates depend on local &
collective, exchange & dephasing interact. in a correlated way

– Entanglement: estimates on entanglement preservation
and entanglement death times for class of initial ρ0



Isolated v.s. overlapping resonances

•
{

Energy level spacing of system σ
System-reservoir coupling constant λ

•
{

Isolated resonances regime: σ >> λ2

Overlapping resonances regime: σ << λ2

εj(λ)
O(λ2)

O(σ)0
εj(0)

Isolated

Starting point: σ fixed, λ = 0
– Stationary system states: ρS diagonal in energy basis (HS)

Perturbation: λ 6= 0 small
– Unique stationary system state: equilibrium ∝ e−βHS

– All decay times ∝ 1/λ2



O(σ)

O(λ2)
εj(σ)

εj(0)

Overlapping

0

O(σ2/λ2)

Starting point: λ fixed, σ = 0
– Stationary system states: ρS diagonal in the interaction

operator eigenbasis (G )

Perturbation: σ 6= 0 small
– Unique stationary system state: equilibrium ∝ e−βHS

– Emergence of two time-scales

◦ t1 ∝ 1/λ2: approach of quasi-stationary states

◦ t2 ∝ λ2/σ2 >> t1: quasi-stat. states decay into equilibrium



A donor-acceptor model

E0

E

σ

H =

 E0 0 0
0 E + σ/2 0
0 0 E − σ/2

+ HR +λ

 0 1 1
1 0 0
1 0 0

⊗ϕ(g)

• HR =
∑

k ω(k)a†kak and ϕ(g) = 1√
2

∑
k(gka†k + h.c .), reservoir

spatially infinitely extended and at thermal equilibrium.

• Donor-acceptor transition induced by environment.



Degenerate acceptor, σ = 0

• Stationary system states are convex span of equilibrium state
ρ1 ∝ e−βHS + O(λ2) and of ρ2 ∝ |0 1 − 1〉〈0 1 − 1|.

• Asymptotic system state (t →∞) depends on initial state ρ(0)

ρ(∞) =

 p 0 0
0 1

2 (1− p) α(p)
0 α(p) 1

2 (1− p)

+ O(λ2),

where p depends on ρ(0)

• Final state is approached on time-scale t1 ∝ 1/λ2,

ρ(t)− ρ(∞) = O(e−t/t1),



Lifted acceptor degeneracy, 0 < σ << λ2

• The total system (donor-acceptor + environment) has single
stationary state: the coupled equilibrium state. Reduced to
donor-acceptor system, it is (modulo O(λ2))

ρβ ∝ e−βHS

• Final state is approached on time-scale t2 ∝ λ2/σ2 (>> t1)

ρ(t)− ρβ = O(e−t/t2),

• Manifold of stationary states for σ = 0 becomes quasi-stationary
(decays on time-scale t2)



• Arbitrary initial state ρ(0) approaches quasi-stationary manifold,
then decays to the unique equilibrium ρβ.

ρ(0) t1

t2

ρβ

quasi-stationary manifold

• Evolution of donor-probability, pD(t) = [ρ(t)]11

pD(t)

(eβ∆E + 1)−1 1

thermal
(eβ∆E + 2)−1

1
2

(eβ∆E + 1)−1

t
0 t1 t2

• pD(0) ∈ [0, 1], pD(t1) = 1
2

1+pD(0)
eβ∆E+1

, pD(t2) = 1
eβ∆E+2

(equil.)
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