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Open quantum systems

e System + Environment models Hamiltonian
H = Hs + Hr + AV

- Hs = diag(Eq, ..., En) system Hamiltonian (finite-dimensional)
— Environment a ‘heat bath’ of non-interacting Bosons (Fermions)
at thermal equilibrium (7 =1/8 > 0) w.r.t. Hamiltonian

HR = Zwkaiak
k

wy dispersion relation
— Interaction constant )\, interaction operator

V=G6® Z (gkai + h.c.)
P

G = GT acts on the system, gx € C is a form factor.



e Schrodinger dynamics

prot(t) = e pg @ pg

ps arbitrary system inital state, pgr thermal reservoir state

e Irreversible dynamical effects (in S or R) are visible in the limit of

continuous bath modes (e.g. thermodynamic limit: oo volume)
Examples: convergence to a final state, decoherence, loss of

entanglement, dissipation of energy into the bath

e The limits of: continuous modes, large time, small coupling,....
are not independent

e Our approach starts off with infinite-volume (true) reservoirs;
first we perform continuous mode limit, then we consider t — oo,
A—0,....



The coupled infinite system

e Liouville representation (purification, GNS representation): view
density matrix as a vector in ‘larger space’ (ancilla)

o system state p = 2, Pyl > Vs = X B © Uy
o oo-volume reservoir equilibrium state — Vg

o Initial system-reservoir state: ¥y = Vg ® Vg

e Dynamics generated by self-adjoint Liouville (super-)operator L
\Ut = e_ithO’

with
L=Ly+ AV, Lo =Ls+ Lg



Dynamics and spectrum of L = Ly + AV

e Guiding principle: spectral decomposition “ e~ itk = > e G p; "
spec(Lg) ¢ R XX
spec(LR)
AV
spec(Lo) > * e % spec(L)
0 0

e Stationary states «— Null space (of Lo, L)
— Non-interacting dynamics: multiple stationary states
o) (el © pr

— Interacting dynamics: single stationary state
Equilibrum of system + reservoir under coupled dynamics



Resonances

Unstable eigenvalues become complex ‘energies’ = resonances =
eigenvalues of a spectrally deformed Liouville operator.

Spectral deformation:
Transformation U(6), § € C — L(#) = U(O)LU(0)?

spec(Lo(6))
spec(Lo) Imf > 0 €t
%% % o
0
continuous spectrum
L(9))
-~ spec(
~ Im6

e c0 =0 is simple eigenvalue, Ime;(\) o< A2 > 0



Resonance representation of dynamics

e Spectral decomposition of L(6)

eitL(G) “__n 2 eitajpj + O(e—vt)

J

Dynamics of system-reservoir observables A
(Are =3 IG(A) + O(e™)
J

Remainder decays more quickly than main term (v > Ime/)

¢j and (; calculable by perturbation theory in A

For observables A of system alone, remainder is O(\%e™7%)

Return to equilibrium. The coupled system approaches its joint
equilibrium state: lim;—o (A): = Co(A).



Example: reduced dynamics of system

Two spins coupled to common and local reservoirs

Spin Hamiltonians Bi 207 ,
Interact.: energy exchange/dephasing: 07 ,/07 ,® ng(a}: + ak)
e Dynamics of two-spin reduced state p;

— Thermalization (convergence of diagonal of p;): rate depends
on exchange interaction only

— Decoherence (decay of off-diagonals): rates depend on local &
collective, exchange & dephasing interact. in a correlated way

— Entanglement: estimates on entanglement preservation
and entanglement death times for class of initial pg



Isolated v.s. overlapping resonances

. Energy level spacing of system o
System-reservoir coupling constant A

Isolated resonances regime: o >> A2
Overlapping resonances regime: o << \?

gji(N)
i\ & x
Isolated x * yf I 0(»)

Starting point: o fixed, A =0

— Stationary system states: pg diagonal in energy basis (Hs)
Perturbation: A # 0 small

— Unique stationary system state: equilibrium oc e #Hs

— All decay times oc 1/)?



% 10(02/)?)

© X.

Starting point: A fixed, 0 =0
— Stationary system states: pg diagonal in the interaction

operator eigenbasis (G)

Perturbation: o # 0 small
— Unique stationary system state: equilibrium oc e=##s

— Emergence of two time-scales
o t; oc 1/\?: approach of quasi-stationary states
o ty oc A2/0? >> t1: quasi-stat. states decay into equilibrium



A donor-acceptor model

Eo
\\* o
)
Eq 0 0 011
H=| 0 E+o/2 0 FHrAA[ 1 0 0 | ®e(g)
0 0 E—o0/2 100

o Hr =), w(k)alak and p(g) = % Zk(gkai + h.c.), reservoir
spatially infinitely extended and at thermal equilibrium.

e Donor-acceptor transition induced by environment.



Degenerate acceptor, 0 = 0

e Stationary system states are convex span of equilibrium state
proxe PP 1 O(N2)andof ppxx 01 —1)(01 —1].

e Asymptotic system state (t — oo) depends on initial state p(0)

p 0 0
ploo) =10 3(1—p) alp) |+ 0N,

where p depends on p(0)
e Final state is approached on time-scale t; o< 1/)2,

p(t) = p(o0) = O(e™t/1),



Lifted acceptor degeneracy, 0 < 0 << \?

e The total system (donor-acceptor + environment) has single
stationary state: the coupled equilibrium state. Reduced to
donor-acceptor system, it is (modulo O(\?))

ps X e BHs

e Final state is approached on time-scale t; oc A\2/0? (> t1)

p(t) — ps = O(e™/®),

e Manifold of stationary states for 0 = 0 becomes quasi-stationary
(decays on time-scale tp)



e Arbitrary initial state p(0) approaches quasi-stationary manifold,
then decays to the unique equilibrium pg.

p(O)‘k t1 pﬁ
quasi-stationary manifold C—

e Evolution of donor-probability, pp(t) = [p(t)]11

thermal

| 0 't t2‘

* pp(0) € [0, 1], pp(t1) = 3R, po(t2) = st (equil)
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