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X =G(0,U) where XeX,0c€0O,UEecU
@ G is the structure equation. U is (God’s) uncertainty.

E‘:aé,:?f @ Together, G and U determine the sampling distribution.
Missingness

@ The sampling distribution does not determine G and U.

Method Type of Replication Relevant?
Frequentist data given parameter X|0 X
Bayes parameter given data 01X
Fiducial uncertainty given data  U|X

@ Why should finding U|x be any easier than finding 0|x?
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@ What does objective prior @ What does objective
mean? posterior mean?
@ Ad hoc arguments give @ Ignore information on t in
m(p) o< 1. (x,s) that’s tied to 7.

@ Objective Posterior: Throw away data until we don’t need
a prior on (.
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Missingness A probability statement concerning € [the error] is ipso

facto a probability statement concerning 6. (Fraser 1968)

One can get a random realization from the fiducial
distribution of £ by generating U and solving the structural
equation for . (Hannig 2009)

The key point is that knowing 0 is equivalent to knowing
U; in other words, inference on 8 is equivalent to
predicting the value of the unobserved U. (Martin, Zhang,
and Liu 2010)
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A Missing (Data) Perspective: Prior = Nuisance

@ The conditional distribution of X given U depends on 7.

f (x|U,) :/f(x|u,e)7r(d9):/1{x=c(9,U)}w(de)

Predicting the Missing U

f (Ulx,7) < f (U) f (x|]U, 7).

@ We can treat 7 (df) as an infinite dimensional nuisance
parameter in the “U-likelihood”, f(x|U, 7).

@ 7 can be viewed as a nuisance parameter only if we switch the

problem from inference for 6 to prediction of U.

Can we get to 7(0|x) without going through 7(6)?

!

Can we predict U without any knowledge of the nuisance?
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ot L and @ f(x|U,7) contains all information in x about U and 7.
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@ Goal: Extract information on U not contaminated by the
nuisance parameter .
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@ Technique: Throw away data contaminated by 7. Reduce x to
A(x).

Objective Posterior for U

f(U|A(x)) is an objective posterior for U if it does not depend on the
value of the nuisance parameter, .

@ Requires f(A(x)|U, ) = f(A(x)|U).
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@ P(X =xle,p) =1{x =¢e1} is free of p.
@ P(Y =yle,p) =1{y = pe1 + /T— pe2} depends on p.

@ Situation reverses by switching the roles of X and Y in the
fiducial equation.
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An Ancillarity Paradox from Basu (1964)

@ Let (X, Y) have fiducial equation
X =¢1and Y = pe; + /1 — pex where ¢; i.i.d. N(0,1)

@ X, Y are marginally ancillary but not jointly ancillary.
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@ P(X =xle,p) =1{x =¢e1} is free of p.
@ P(Y =yle,p) =1{y = pe1 + /T— pe2} depends on p.

@ Situation reverses by switching the roles of X and Y in the
fiducial equation.

@ Whether or not A(x) is free of 7 given U depends on G.
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D A statistic A(x) is representationally ancillary w.r.t. G if there exists

ESRIVER 2 representation Ag s.t. A(G (6,U)) = Ag (U) V6.
@ A(x) is R-ancillary if and only if U|A(x), 7 ~ U|A(x).
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Lemma (also see Barnard, 1995)

If A;(x) and Ay(x) are both R-ancillaries w.r.t. G, then they are
jointly R-ancillary w.r.t. G.

@ Write A17A2 as A17G(U),A27G(U). Then (ALG(U),AQ’G(U))
remains a R-ancillary w.r.t. G.

@ In Basu's paradox, X, Y are both ancillaries but they are not
R-ancillaries with respect to the same G.
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@ Fiducial inference depends on G because whether a statistic is
ancillary for 7 depends on whether it is R-ancillary for G.

A Partial Look
at Fiducial @ Definition of ancillarity as distributional independence of A(x)

from 6 is insufficient.

@ We require the notion of representational (or functional)
independence.
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Fiducial Is Just Partial Likelihood

Partial Likelihood for U

@ Assume the decomposition, x =(T (x),A (x)) where A (x) is
R-ancillary w.r.t. G.
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@ Assume the decomposition, x =(T (x),A (x)) where A (x) is
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@ (T (x)|A(x),U, ) requires prior specification.

@ f(A(x)|U) is known independent of the prior, 7.
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13/31 @ Assume the decomposition, x =(T (x),A (x)) where A (x) is
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@ The joint (U, 7)-likelihood factors as

f(x|U,7) =7 (T (x)|A(x),U,n)f (A(x)|U).
A Partial Look
at Fiducial @ (T (x)|A(x),U, ) requires prior specification.

@ f(A(x)|U) is known independent of the prior, 7.

Fiducial Recipe for U|x

@ Ignore factor f (T (x)|A(x),U, ) because information on U
“cannot be disentangled” from prior.
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@ The joint (U, 7)-likelihood factors as

f(x|U,7) =7 (T (x)|A(x),U,n)f (A(x)|U).
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@ Ignore factor f (T (x)|A(x),U, ) because information on U
“cannot be disentangled” from prior.

@ Use f (A(x)|U) to obtain f(U|A(x)) o< F(U)f(A(x)|U).
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@ The joint (U, 7)-likelihood factors as
f(x|U,7m) =1 (T (x)|A(x),U,n)f (A(x)|U).

A Partial Look
at Fiducial o (T (x)|A(x),U,n) requires prior specification.

@ f(A(x)|U) is known independent of the prior, 7.

Fiducial Recipe for U|x

@ Ignore factor f (T (x)|A(x),U, ) because information on U
“cannot be disentangled” from prior.

@ Use f (A(x)|U) to obtain f(U|A(x)) o< F(U)f(A(x)|U).
© Pretend f(U|A(x)) = f(U|x).




Fiducial Is Just Partial Likelihood

Who's, Partial Likelihood for U

13/31 @ Assume the decomposition, x =(T (x),A (x)) where A (x) is
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@ The joint (U, 7)-likelihood factors as
f(x|U,7m) =1 (T (x)|A(x),U,n)f (A(x)|U).

A Partial Look
at Fiducial o (T (x)|A(x),U,n) requires prior specification.

@ f(A(x)|U) is known independent of the prior, 7.

Fiducial Recipe for U|x

@ Ignore factor f (T (x)|A(x),U, ) because information on U
“cannot be disentangled” from prior.

@ Use f (A(x)|U) to obtain f(U|A(x)) o< F(U)f(A(x)|U).
© Pretend f(U|A(x)) = f(U|x). Refreshing or Revolting?
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Exponential Hyperbola

e V= %El and W = \E; where E;, E; are iid exponential.

o A= (W/V)"?is the MLE and A = (VW)"? is an R-ancillary.
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@ But \ is not sufficient. Can we do better?

We observe A = (E;5,)"?. Impute (E,/E;)"? according to
f(E1, E2|A).
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@ But \ is not sufficient. Can we do better?

We observe A = (E;5)"?. Impute (E,/E;)"? according to
f(Ex, Ex|A). Parallels using conditional likelihood f(A|A, \).
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When the Recipe Works...

Exponential Hyperbola

e V= %El and W = \E; where E;, E; are iid exponential.

X = (W/V)"? is the MLE and A = (VWW)"? is an R-ancillary.
@ Solve X = A (E2/E1)"? to obtain A = X (Ey/E)"2.

@ Impute (E2/E1)1/2 according to its prior distribution. Parallels
using marginal likelihood f(A|X).
@ But A is not sufficient. Can we do better?

@ We observe A = (E;1E,)"?. Impute (Ey/E;)"? according to
f(Ex, Ex|A). Parallels using conditional likelihood f(A|A, \).

@ Why does conditioning on ancillary statistics recover second
order information?
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Who's Exponential Hyperbola
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e V= %El and W = \E; where E;, E; are iid exponential.

{eli Liu and

R X = (W/V)"? is the MLE and A = (VWW)"? is an R-ancillary.

@ Solve X = A (E2/E1)"? to obtain A = X (Ey/E)"2.

A Partial Look @ Impute (E2/E1)1/2 according to its prior distribution. Parallels
2t Fiducial using marginal likelihood f(A|\).
@ But A is not sufficient. Can we do better?

@ We observe A = (E;1E,)"?. Impute (Ey/E;)"? according to
f(Ex, Ex|A). Parallels using conditional likelihood f(A|A, \).

@ Why does conditioning on ancillary statistics recover second
order information?

@ Fiducial Answer: It increases our efficiency of predicting U.
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Who's . : . .
Crazier? @ X has the following fiducial equation
15/31

0 0<U<?
X_G&W_{192U<1

where U ~Unif[0,1] and 0 € [1/4,1/2].

@ Key Question: Without 7(0), what do we know about U?

What is the free information in X about U?
Observed Not
At Random The only additional information available to us is the fact
that the value of U and x must be compatible. (Hannig

2009)

@ If X =0, Ue[0,1/2], shall we predict U as Unif[0,1/2]?
If X =1, U € [1/4,1], shall we predict U as Unif[1/4,1]?

@ What are we forgetting by doing this?
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@ Hannig (2009) assumes that

f(UIM(X) = M(x)) = f(U|U € M(x)),
Observed Not
At Random hence does not depend on 7.

@ The event {M(X) = M(x)} contains two pieces of information:
Q@ Up< M(X)

@ How we came to observe Uy € M(x).
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@ If we generate data x = G (6o, Ug), we learn that Uj resides in
Keli Liu and

e e M (G (60,Up)) = {U :30 € © s.t. G (6, Ug)=G (6,U)}.

@ Hannig (2009) assumes that

F(UIM(X) = M(x)) = f(UJU € M(x)),

Observed Not
At Random hence does not depend on 7.

@ The event {M(X) = M(x)} contains two pieces of information:
Q@ Up< M(X)
@ How we came to observe Uy € M(x).

@ To correct use the information in (1), we need to condition
on the how, i.e., condition on the observation process.
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Bernoulli with Restricted Parameter Space

ho's @ Reminder: U ~Unif[0,1] and 0 € [1/4,1/2]
17/31

{eli Liu and X = G (97 U) = {

iao-Li Meng

0 0K<U<¥
1 60<U<1

e M(0)=1[0,1/2], M (1) =[1/4,1].

@ I{B} is indicator function. Let I, =T{U € M (x)} for x =0, 1.

Observed Not o
At Random @ We do not observe L. It must be inferred from data.

What We Actually Observe

o I = XT; + (1 — X)Io (Note: I = 1)

@ For x € X, define

1 if Iobs = I,
Ox = { 0 otherwise
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A Sleight of Hand

@ M(X) contains the information I, through I°* and {O,}.
f (UlM (X) ) 7T) =f (U|]I0bsa 007 017 7T)
@ Rewrite the posterior using the law of total probability

> F(UL = t, 05, 01,m) P (I, = t|I°*, Oy, Oy)
te{0,1}

@ Problem: The distribution of Oy, O; depends on 7.

The Sleight of Hand

@ To remove the dependence on 7, make the substitution
f(U|Lx =t, O, O1,7) = f (U|L, = t)

@ We ignore how we learned {I, = t}.
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@ Using the sleight of hand, rewrite the now m-free posterior
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O, We Just Ignored You!

@ Using the sleight of hand, rewrite the now m-free posterior

> (UL =1t) P (I, = t[I°*, O, O1)
te{0,1}

@ We ignored O, O; in the first term BUT continue to condition
on it in the second term—incoherent.

@ It is this incoherence which leads to the incorrect assumption

F(UIM(X) = M(x),7) = F(U[U € M(x))

Confidence Validity (Rubin 1976)

@ The posterior f(U|U € M(x)) leads to valid confidence regions
for U if the observation process is ignorable

P(]IX:1|O():OQ, 01 :Ol,U77T): P(]IX:1|U)
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e @ Condition for confidence validity does not hold:

P(Io = 1|U,0) = 1{U < 1/2}
P(Ho: 1‘00:1,01 :0,U79) :H{US@}

Observed Not @ Confidence valid inferences for U requires modeling O, O;.
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@ The distribution of (Op, O1) depends on 7: the reduction
X — M(X) does not throw away enough information.
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20/31 Suppose we observe g = 1 and I is missing.

e e @ Condition for confidence validity does not hold:

P(Io = 1|U,0) = 1{U < 1/2}
P(Ho: 1‘00:1,01 :0,U79) :H{US@}

Confidence valid inferences for U requires modeling Oy, O;.

Observed Not
At Random

The distribution of (Op, O1) depends on 7: the reduction
X — M(X) does not throw away enough information.

The information U € M(x) seems free. But to use it correctly
requires paying the price of a prior on 6.
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The Consequences of Being Cheap

Actual Posterior, X =0

E™=0[1{U < 6} /6] J 21{U < 1/2} J

Naive Posterior, X =0

Crazier?
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Keli Liu and
Xiao-Li Meng

@ lIgnoring {0y, O1} equivalent to assuming point mass prior at
6 = 1/2—most dogmatic of all!

0
<
Observed Not
o
At Random ‘? ~
@
c
[T)
a <&
=
° — Point Mass at 1/2
c 2
w — Uniform Prior
o
o v | — Jeffreys Prior
o
e J
o
T T T T T 1
0.0 0.1 0.2 0.3 0.4 0.5
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Know the Price

Crazier?
22/31

Keli Liu and
AU @ Takeaway: The information U € M(x) is not free—may

require assuming 7.

@ Question 1: So when is this information free? When is

Observed Not H HP ?
o erved I U|M(x) objective—free of 77

@ Question 2: What is maximal amount of free information
about U? What is the “best” objective posterior for U?
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How Small Can You Go?

Crazier?
23/31

@ U|M(x) is an objective posterior for U if and only if an

ol Lt R-ancillary statistic captures the information in M(x).

Xiao-Li Meng

R-Ancillary Regions

@ If A(x) is R-ancillary s.t. A(G(6o,Uq)) = Ac(Uop), the
R-ancillary region defined by A is the set

Ac (Uo) = {U :Ag (U) = Ag (Uo)}

@ The smaller the R-ancillary region, the more informative A is.

Is Utopia
Possible? @ Any R-ancillary region is rougher than the x compatible region.

M(G(eo, U())) C Ag (Uo) V6o, VAg

@ What is the smallest we can make A;? Does a smallest
region even exist?
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24/31 @ R-ancillary statistics are jointly R-ancillary. Intersection of

<eli Liu and R-ancillary regions is an R-ancillary region.
iao-Li Meng

Utopia C Cave

Us (Uo) = | J M (G (6o, U0)) C N Ag (Ug) = Cs (Up)

0o c© A: R-ancillary for G

Is Utopia

Possible?

@ The maximal R-ancillary, Anax, restricts Ug to the Cave.

@ Ultimately, we hope to restrict Ug to Utopia, which is the
universal “Cramer-Rao lower bound for conditioning”.

@ Can we achieve Utopia?
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Can Statisticians Achieve Utopia?

o Despite all the cynicism in the world, we happily report...

25/31

Utopia Can Always Be Achieved

{eli Liu and
iao-Li Meng

Utopia = | J M (G (60, U)) = N Ag (Up) = Cave
0p€© A: R-ancillary for G

@ The collection of Utopia sets, {U/g(Uo)}u,cu. partitions the
pivot space into equivalence classes.

:jogstifje‘j @ The set of pivot space equivalence classes corresponds to a set
of sample space equivalence classes.

© The index for the sample space equivalence class is observed
and is R-ancillary.

@ Utopia represents an upper bound on the informativeness
of an R-ancillary. It is always achieved.
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Making Relevant Subsets Relevant Again

Who's @ Fisher (1934) argued that we should condition on relevant
subsets. Of what space?

Classical Way New Way

@ Subsets of the sample @ Subsets of the pivot space,
space, X. U.

@ Level-sets of ancillary @ Level-sets of R-ancillary
statistics. statistics.

@ Paradoxes: Which ancillary @ Unique “most relevant”
statistics? Existence? subset—Utopia.

Conclusions o -

@ U, the uncertainty, dictates how hard the inference problem is.
@ Condition on U < Condition on difficulty of inference.

@ Want to give same effort for all difficulties.
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Who's
Craier @ The optimal achievable objective (free of 7) posterior for U:
I L j f(U|AmaX)'
iao-Li Meng

“Heaven Is Possible” If and Only If...

With respect to fixed G,
f(U|Ama>< (X)) =f (U|M (X))a vx e X

if and only if VU €U, V0 € ©, M (G (0,U)) = Ug (U) where U (U)
is the Utopia set containing U.

Interpretation

Conclusions

@ M(G(0,U)) is the information we get back about U if data are
generated using 6.
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Conclusions

@ For fixed G, Cy is a most relevant confidence region for U.

@ The mapping (U, x) (not necessarily function) converts Cy
into a most relevant 1 — « level confidence region, Cy for 6.

@ (y attains posterior probability 1 — «v if (1) and (2) hold.
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@ Uncongeniality: Inconsistent use of the full data, x, and the
partial data, Ap.x, in different phases of the analysis.

@ Non-uniqueness: How does one choose G?
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