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Biological Motivation



Bistability in the Bacillus subtilis K-state (competence)
system requires a positive feedback loop
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“The world inhabited by bacteria and other microorganisms is
perilous. These tiny creatures must cope with the vicissitudes

of an environment that undergoes perpetual alterations in
temperature, salinity, pH, availability of nutrients, challenged by antibiotics, mutagents,

toxins, radiation...”
Dubnau and Losick, Bistability in Bacteria, 2006
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Stochastic switching: evolutionary bet-hedging mechanism
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QUESTIONS: When is switching adaptive? What are optimal rates of
switching?



Stochastic switching regarded as a bet-hedging strategy by
which genetically identical individuals are able to express
different phenotypes in different environments.



Population Genetic Background



A haploid modifier modéd with constant environment

Genotypes AB Ab aB ab

Frequencies X, X X5 X, (X, + X, + X, + X, = 1)
Fitnesses W, W, W, W,
Mutation at A/a AB o aB at rate L

Controlled by B/b Ab - ab at rate u,
B/b is selectively “neutral” W, =W,, W,=W,

Recombination: AB/ab - AB ADb aB ab
r’2 (1-n)/2 (1-r)2 r/2

Problem: What mutation rate will the population evolve?
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Write x1, X5, X3, X, for AB, Ab, aB, ab frequencies in the next
generation. The dynamical system 1s

wx; = (1 — ug)wy(xy — D) + pgws(x3 + D)
wxy = (1 — pp)wy (x5 +1D) + ppwy(x, — D)
wxs = (1 — ug)ws(x3 + D) + upwy(xy — D)
wxy = (1 — pp)wa(xy — D) + ppwo(x2 +7D)

W = Zwixi —1D(W; —wy, — w3 +w,), D =Xx1X, — XyX3.
Since B/b is neutral, w, = w,, wy, =w,, w= YwWx,.
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Start with only B present.
A fixed point exists x7,x3; > 0 (x5 = x, = 0).

Under what conditions will allele 4 increase 1n frequency starting
near (x1,x3)?

Local stability of (x7,0,x3,0) in simplex (x{, X5, X3,X,4).
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Initial increase of allele b

wrzry = (1 — pp)wa(za + rD*) + ppws(zg — rD*)

(1.16)
w*z)y = (1 — pp)ws(zg — 7D*) + pywa(za + rD*),
where
w' =wyr] +wsry, D =zxiry— x519. (1.17)
From (1.16), the matrix £ associated with this linear transformation is
1 | (1= pe)wz — r[(1 — pp)ws — ppwars powa + (1 — pp)wz — pywa]z]

— . (L18)

v pywy + (1 — pp)wy — ppwsly (1 — po)wy — 7[(1 — pp)wy — prown]x]

The eigenvalues of £ satisfy the equation M (z) = det(L — 2Z) = 0, where I is the 2 x 2

identity matrix.

The positive eigenvalue of L is less than 1 if M (1) > 0 and M’(1) > 0 and is larger than
1if M(1) <0.
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Result. The unique internally stable equilibrium
x = (x},0,x%,0) is externally stable when u, > u , and is
externally unstable when u, < u, provided 0 <r < 1. Thus
when 0 = r < 1, evolution reduces mutation rates.

Result. The mean fitness w* = w;x; + w3x; at
equilibrium is a decreasing function of .
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Phenotypic Evolution in Fluctuating Environments

At generation i, for 2 = 1,2, ..., k, the fitness parameters are

gamete: AB Ab aB ab
(2.1)

fitness:  w] w) wi wj
where

wy =wy,  wp=uj. (2:2)

If at the beginning of generation i, for « = 1,2,...,k, the population state has the
frequency vector = = (x1,x2,1x3,14), then after that generation the new frequency vector
' = (zf, 25, x5, 2}) is given by ' = T;(z), where T; is given by

w'z} = (1 — pp)wi(z1 — rD) + ppwi(zs + D)

w'rh = (1 — pp)wh(x2 +7D) + ppwi(zs — D) 23)
wizh = (1 - pp)wi(zs + rD) + ppwi (e, — rD) |
w'zly = (1 — pp)wi(zs — D) + ppwi(z2 + D),

where the mean fitness w' in generation 17 is

4
w' = Z wyTy . (24)
e=1



If the population state at the beginning of the & generation process is y = (y1,¥2.Y3,Y4),
then after generation £ it is " = (v1,vs,v3,y4) where ¢y’ = Ty and the transformation T is

given by the composition of the k transformations
T:TkOTk_10---OT1. (25)

If we denote by yi the population state at the start of generation 7, for ¢ = 1,2,..., k, where

y! =y, then the mean fitness associated with the transformation T is

w=w(y) = H w' (g*) : (2.6)
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Suppose only AB, aB present (x, = x, = 0).
wixi™ = (1 — up)wixi + ppwixs,
wixs™ = (1 — up)wsxs + ppwix;.

wt = wix! + wixi. Transform to u* = x!/x..

it = f(u ) (1-up)wiu'+upwi
I upwiul+(1—pgIwl’

[inear fractional; retains form under continued 1iteration and
converges to a unique fixed point (xj, 0, x3,0).

This 1s the new starting point for evolution of allele 5.
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Ab, ab appear near the “equilibrium™ (x7, 0, x3,0)
in (xq, X5, X3, X,) space while the evolution under
Ty © Ty—q1 coo Ty = T proceeds. Write x = (x4, X5, X3, X4)

*
X'=Tx=x +¢,

where

19



L"=Ly-Ly 1 - - Ly has the form

1 3 2 4

i + x 1 1
f’in
. ¥ % 3
L = ) (2.20)

0 0 2

Lex
0 0 1 4

The eigenvalues of £ are therefore those of L;, and L., where L;, determines the internal
stability of z*, confined to the boundary with only B present. As z* is stable there, these
eigenvalues are less than one in magnitude. Lo in the linear approximation of T near z* (the

equilibrium with B fixed) involving only the gametes AB, aB. Moreover
Loy =L - L, - LT, (2.21)

where £, for i = 1,2, ...,k is the submatrix of £; with only the b allele present.
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Eigenvalues of L, determine local stability. These are
extremely difficult to characterize in general. Go to special

cases.
Symmetric fluctuation

AB Ab aB ab

Environment I W, W, W W;
Environment II W, W; Wi Wy

Period 2: I,IL. L II,......

Result. The fixed point (x7, 0, x3, 0) is locally stable to
invasion by allele b is u; > u, and locally unstable when
u,> ugtor all) =r<1.

Result. The mean fitness is an increasing function of up.



Period 4: I,1I; II,II; I,I ..., symmeftric fitnesses

ii.

1il.

iv.

time 1 W, W, W, W
time 2 W, W, W, Wi
time 3 W, W, W, Wy
time 4 W, W, W, Wy

The mean fitness achieves a maximum at u, = 1.

The mutation rate uz = ¥ cannot be invaded by any
allele b that gives u, < or u, > 1.

For symmetric fitnesses, for cycles with period m = 2n,
withr=0and 0 < u; <1, if allele b gives u, = 0 it cannot
invade, and if u, = 1 it cannot invade.

Mutation rates u,; that are critical points of the mean
fitness w” in the case r = 0 also entail that at u,, = uy,,

d1/op,, = 0.

22



Approximations and numerical analyses of the symmetric case
have proposed that for cycles of period 2n, the stable mutation
rateis 1/n. Not proved yet and seemsto fail for n= 3.



Asymmetrical Fluctuating Selection

AB Ab aB ab
Environment1l: wi=1-51 w2=1-51 wsz=1 ws=1
Environment 2: w; =1 wi=1 wi3=1-53 w3=1-:53

Selection due to A/a; mutation controlled by B/b
Each environment lasts N generations.

Three “natural” cases:

1. N~ gamma(a,8): E(N)=n= af, Var(N) = af%%;
2. N tixed (periodic selection);
3. N exponential (a=1): change at rate 1/n each generation.

What is the stable mutation (switching) rate?

24
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Evolution of stochastic switching rates in
symmetric fitness landscapes, i.e.,
s=5,=5,. The log,, evolutionary stable

switching rate on the x-axis depends both
on the fitness cost of being maladapted in
both environments (s) and the variance of
the distribution of waiting times. The
mean waiting time is fixed at n = 20 and
the variance ranges from zero, which
corresponds to a periodic environment
where the environment changes exactly
every 20 generations, to 400, which
corresponds to an exponential distribution
(a =1, B=20) where the environment
changes with probability 0.05 at each
generation. Different values of s are
plotted using the colored empty and filled
circles given in the legend. Dashed line is
1/n.

Salathé, Van Cleve, Feldman 2009
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mutation rates as a function of the
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left side of the figure. The
recombination rate between the
major locus under selection and
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denote the stable mutation rate
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canonical predicted rate of 1/nin
the color bar at the bottom of the
figure; white is a rate of 1/n,
shades of red are rates higher
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Figure 2: Pairwise
invasibility plots for
mutation rate modifier.
Combinations of resident
mutation rate u; and

invading mutation rate p, in

the white regions yield a
leading eigenvalue greater
than one in absolute
magnitude; the leading
eigenvalue is less than one
in the black regions. We
assume that w, =1 — s,

and w, =1 — s, and set
s, = 0:01. Each row

denotes a different value
for n, the number of
generations in each
environment. The
recombination rate is set to
r = 0. Note that the x- and
y-axis are logarithmically
scaled from 102 to 0:5 and
from1-102to 1 -0:5.



00

[ "
00 R\ Vil
i S
|
|
/
00 ff
=] /)
NS
00 0.2 04 06 08 10
u
and 2 (gray curves) for n = 3. In all

041 ovaluated at m = pp (black curves) s

Figure 1: Comparison of i
plots, 51 = 10! whereas s3 = 1071, 10798, and 10706, in the top, middle, and bottom plots respectively. The
28

vertical line is located at g = 1/n = 1/3



==
VRN
S —
| = El’
= s oot | ] / / —
o
1l //
—15x107' i IF [ I
Iil:il ,‘ I /I 1 | 1 {a)l
00 0.2 04 0.6 08 10
7}
00— ,::'//’F ,.:Q::\Q
H R an=
;o N ittt
i/ / / \\\“*“--u_‘_i-—'**
—05x10°} | | / / \\\““""H
< | < - :r] ,/ x,_q__________.--*'""f
| @ :;I
—1.0x1073 F ;II[ " / /
m / b
HiNE . | Y
00 0.2 04 0.6 08 10
7}

Figure 2: Plot of the derivative of the leading eigenvalue, A;, with respect to p, evaluated at yyy = p,, =
whenn =2and r = 0. In (a), 5y = 1 — wy = 10! and the lines from shortest dashes to longest dashes are

s3=1—wg=10"1, 10799 10798 10707, 10796, and 10725, In (b), sy = 0.01 and the lines from shortest
dashes to longest dashes are 53 = 102, 10719, 10718, 1017, 10716, and 101, The vertical line is located at

pu=1/n=1/2.

29



00r ‘J o T it“"‘*h‘;:*-—:‘-"—-‘ =it
IV a. :“:::"::fffy

~| £ -10x101} P
D | L ]
| | /
Ll [
—2.0x10 ={!/ /
1 IF I ! i j 1 1 1 1 (a) 1
00 02 04 06 08 10
Ji;
s ’[77\
PR —05x1073
|
—10x1073
—15x1073 F
(b)
10

Figure 3: Same as Figure 2 except n = 3. The vertical line is located at gy = 1/n = 1/3

30



Temporal and Spatial Fluctuations
in Selection



Genera framework:

deme B I
genotype AB Ab aB ab AB Ab aB
fitness Wy W W AWy Wy, Wy W
frequency . BE LI T Yy Y2 Y3

Wy — Wgyy Wyy — Wyg, Wgy — Wgy, Wyg — Wy,

ab

Y4

32
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Next generation X', y': mis migration rate (both ways)

] = (1 —m)z; + mi y; = (1 —m)g, + mz,
zh = (1 — m)Zy + miyp Yy = (1 — m)go + mZy
zh = (1 — m)T3 +mys ys = (1 — m)ys + mis
zy = (1 — m)Zy +myy Yy = (1 — m)gy + my,

we1 = (1 — pB) we, (x1 —rDz) + pBwz, (x3 +1rD2)
weZo = (1 — pp) Way (z2 +7D3) + powe, (x4 — rDy)
Wy @3 = (1 — puB) Wy (v3 +1Dz) + pBwz, (T1 —17D2)
wey = (1 — pp) wa, (24 — rDy) + ppwe, (22 + rDy)

wyy1 = (1 — uB) wy, (y1 —7Dy) + pBwy, (y3 +rDy)
wyY2 = (1 — pp) wy, (y2 +rDy) + powy, (ya — rDy)

wyys = (1 — puB) wy, (y3 + rDy) + pBwy, (y1 —rDy)
wyYs = (1 — pp) wy, (ya — rDy) + pywy, (y2 +rDy),

4 4
DI:$1I4—$21?3= Dy:ylyil_yEy?n Wy = E Wy, Lyy Wy — E Wy, Yi -



Symmetric Selection

E, E,
AB Ab aB ab AB Ab aB ab

fithess 1+s 1+s 1 1 1 1 1+s 1+s

Whenx,=x,=Y,=Y,=0, Bisfixed andthereisa
“symmetric” equilibrium.

Result
1. On the boundary, where only allele B is present, there is a unique “symmetric
equilibrium” (x*,y™) with

x* = (z%,0,1—2%,0), y*=(1—2",0,2%,0),
where x* is the unique positive root of the quadratic equation
Q(z) = sz + [(5 +2)(m +pB — 2mpup) — S]:I: — (m+p —2mpupg) = 0.
2. (x*,¥y*) is internally stable on the boundary with only B present.

3. If0<m, ug < % then x* > %
34



An “asymmetric” equilibrium may exist:
(f; Orl T f! 0)(?! 0!1 T y; 0);
which 1s near (1,0,0,0) (1,0, 0, 0) when u; 1s small.
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Evolution of mutation by invasion of X" y* by allele b.

x' x* 4 x* £
! — * + f — * +L*
(3’) (rf ) (5) (:&f ) (5)
Eyl &3 51 53 Ea Ej 52 54

* &
Lin £3

ex




/ (1-m)A (1-m)B mC' mD \

. (1—m)D (1—-—m)C mB mA
Tl ma mB  (1—m)C (1—m)D
\  mD mC  (1—m)B (1—m)A/

A, B, C,D >0; al functionsof s, r, (., L.
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Similarity Transformation

10 0 1
Write p-| 0 1 10
00 1 0
00 0 1
/M 0
Then PLeXPIZ(* N)'

Hence stability 1s determined by two quadratics.



No Temporal Fluctuation

Result. When O <m, (g, 1, < %2, the symmetric

equilibrium (x*, y*) is externally stable to the introduction
of the new modifier allele b if 1, > u; and is unstable if
U, < Ug. Therefore, the reduction principle holds and zero

IS the only uninvadable switching rate.



Periodic Fluctuating Selection

Ex Ey
A a A a
Type 1 selection: 1+s 1 1 1+s
Type 2 selection: 1 1+s 1+s 1

In general, k rounds of type 1 selection followed by
¢ rounds of type 2 selection. Simplest case k=1 = 1.

Result. When 0 < m,pp < 1 and s > 0, a unique symmetric equilibrium (X, y) exists
such that
% =(z,0,1 —z,0), y=(1-z0z,0).

T is the unique positive root of R(z) = 0, where
R(z) = sz* + [2 — mp(s + 2)]z — (1 — mp),

with mg =m 4+ pug — 2mug. If, in addition, 0 < m,ug < %, thenD <z < L.

[P
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Stability (invasion of b) is determined by L., = L%,.LL,.

Result. The internally stable unique symmetric equilibrium (X,¥), in the case of se-
lection fluctuating with period 2, is externally stable when pug > pp and is unstable when
up < pp, forall0 <r <1 and 0 <m < % Thus, in this case, higher switching rates are
favored, and the evolutionarily stable mutation rate is 1.

Result. The mean fitness at the symmetric equilibrium is
i. a decreasing function of pp in a constant environment,

ii. an increasing function of ug in a period 2 cycling environment.

Result. [n the period 4 symmetric case, if r = 0, the mean fitness w = w(mp) achieves
a maximum at mg = %
Result. In the period 4 symmetric case with 0 < r < 1 and for all migration rates,

the mutation rate ug = % cannot be invaded by mutation rates either smaller or larger

than % Thus, pp = % is the stable mutation rate.
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Note:

72 72 2 1 751 1
Lex — éexLex Le_}_g_ éexLex Legg
k ?

is strictly positive and of the form

(a e h d\
b f g c
c g [ b

\d h e a

Hence two quadratics for stability,
but they can be very, very messy. .
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Mean fitness

44+

4.0-

Migration
-0
-1
—0.2
—03
=04

0.4 0.6
Switching rate

03~

Stable switching rate

-4
=5
7
10
=11
=15
20

00 01 02 03 04 05
Migration rate

Environmental rate

stability

1.0
0.54
w
14 Derivative:
‘g ~— mean fitness
'g ~ leading eigenvalue
0.0+
0.5+

T T
0.0 0.2 0.4 0.6
Switching rate

44



0.3+

Stable switching rate
o
N

o
Y
1

0.0+

Recombination
=0
- 0.1
- (.2
0.25
- (.4
- 05

0.0 0.1 0.2 03 04 0.5
Migration rate

45



Stable switching rate
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