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String duality and K3 surfaces from Seiberg-Witten curves

Overview

@ String duality: Heterotic theory/F-theory
@ 'Quantum’ compactifications of the heterotic string

© Examples of K3's associated with Seiberg-Witten curves
period maps = generalized hypergeometric functions
yperg



String duality and K3 surfaces from Seiberg-Witten curves
1) String Duality

Heterotic/F-theory Duality

The heterotic string compactified on an (n — 1)-dimensional
elliptically fibered Calabi-Yau 7y : Z — B is equivalent to F-theory
compactified on an n-dimensional K3-fibered Calabi-Yau

wF - X — B, which is also elliptically fibered with a section.

Eight-dimensional compactifications: n =2 and B = pt

@ Heterotic CY: Z = E elliptic curve w/ principal G-bundle,
GC (Eg X Eg) X Zo or Spin(32)/Zz.

o F-theoretic CY: elliptic K3-surface X — CP! w/ section,
X: Y?=4X3-g X—g3, g < H(O8)), g3 € H(O(12)).

@ Moduli spaces for both types are given by the Narain space

M = SO(2, 18; Z)\SO(z, 18)/(80(2) X 50(18)) .
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1) String Duality

F-theoretic description of type IIB string backgrounds

o Complex scalar 7 with Im7 > 0 is allowed to be multi-valued,
and it is defined away from defects of codimension two.

@ SL(2,Z) acts by standard fractional linear action on 7.

@ To describe the effective field theory one needs:
1) SL(2, Z)-invariant function j(7) — functional invariant,
2) the precise SL(2,Z) action on 7 — homological invariant.

@ Description in Weierstrass model: Y2 =4X3 — g, X — g3,
coefficients: g = Z?:o ajth g = Z}io b, [t:1] € CP,
number of moduli =9 + 13 -3 -1 =18,
discriminant: A = g3 — 27 g2,
functional invariant: j = g3/A,

homological invariant: from vanishing order of g», g3, A.



String duality and K3 surfaces from Seiberg-Witten curves
1) String Duality

F-theoretic description of type IIB string backgrounds

e Singular fiber where A = g5 — 27g32 vanishes.

o Kodaira's classification of singular fibers:
l | ordp(g2) | ordp(gs) | ordp(A) | singularity | monodromy |

1
I, n>1 0 0 n An ( 0 ’1’>
I¥, n>0 2 3 n+6 Disa (‘é _’1’>
* 0 -1
1 3 >5 9 E; ( 1 0)
* 0 -1
1 >4 5 10 Eg ( 1 1)
3
@ Correspondence: string perspective <» monodromy + j = %2

1B + n D7-branes <> Kodaira type I, j = o0,
[IB + n D7-branes on O7-plane <+ Kodaira type /), j = o0,
[IB + exotic 7-branes <+ Kodaira type /II*,II*, ..., |j| < co.
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1) String Duality

Heterotic string backgrounds

o Closed string theory on T2 has two basic moduli:
1) complex structure parameter p € H,
2) complexified Kdhler modulus 0 = B+ iV € H.

@ Geometric compactifications:
p varies over base, undergoes monodromies in SL(2,Z),
o is constant up to shifts.

@ Quantum compactifications: p and o vary over base,
o — —1/o possible, inherently quantum.

@ Moduli of heterotic string compactified on T2 near boundary:

jex str. Kah Tson |
( complex str > " < ahler > % (W|Ison IIHGS)
param. param. [ —
N
pOSL(2,Z) o OSL(2,2) Zyee
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2) Hodge theory

Matching the moduli: F-theory <+ heterotic string

@ Understand duality on low-dimensional subspaces of 9t
r\SO(z, r)/(SO(z) X SO(r)> c .

N r=2:  (SL(2,Z) x SL(2,7)) x Zo\(H x H)
r=3: Sp(4, Z)\H>
@ On heterotic side: gauge group G of high rank,
i.e., compactifications w/ very few Wilson lines.
r =2: No Wilson lines. G = (Eg x Eg) x Zy or G = Spin(32)/Z,.
r = 3: One Wilson line. G = Eg x E7 or G = Spin(28) x SU(2)/Z,.
@ On F-theory side: families of Jacobian K3 surfaces represent
r-dimensional moduli spaces of lattice-polarized K3 surfaces.

@ Use Shioda-Inose correspondence as the duality map between
polarized K3 surface and principally polarized Abelian surface.
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2) Hodge theory

Matching the moduli: F-theory <+ heterotic string

@ Understand duality on low-dimensional subspaces of 9t
r\SO(z, r)/(SO(z) X SO(r)> c .

N r=2:  (SL(2,Z) x SL(2,7)) x Zo\(H x H)
r=3: Sp(4, Z)\H>
@ On heterotic side: gauge group G of high rank,
i.e., compactifications w/ very few Wilson lines.
r =2: No Wilson lines. G = (Eg x Eg) x Zy or G = Spin(32)/Z,.
r = 3: One Wilson line. G = Eg x E7 or G = Spin(28) x SU(2)/Z,.
@ On F-theory side: families of Jacobian K3 surfaces represent
r-dimensional moduli spaces of lattice-polarized K3 surfaces

@ Use Shioda-Inose correspondence as the duality map between
F-theory and heterotic string vacua.
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2) Hodge theory

Weierstrass fibrations — lattice polarized K3's

(based on Morrison-Vafa '96; Clingher-Doran '07, '10; A. Kumar '08)

Y2 — 4X3—|—(at4 )X

X — CP!:
n (t7+bt6+dt5)

No Wilson lines. Gauge group G = (Eg x Eg) X Zo.
sing. fibers of X : 2/I"®4h ,

NS(X) H® Eg @ Eg, signature: (1,17),
Tx = H?, signature: (2,2
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2) Hodge theory

Weierstrass fibrations — lattice polarized K3's

(based on Morrison-Vafa '96; Clingher-Doran '07, '10; A. Kumar '08)

Y2 = 4X3+(at4+ct3>X

X = CF + (t7+bt6+dt5)

c=0:

c#0:

No Wilson lines. Gauge group G = (Eg x Eg) % Zs.
sing. fibersof X ' 2/* @41,

NS(X) H® Eg @ Eg, signature: (1,17),
Tx = H?, signature: (2,2

One Wilson line. Gauge group G = Eg x E7.

sing. fibersof X = II*@® II*®51,

NS(X) = H® Eg® E;, signature: (1,16),
Tx = H?2@ (-2), signature: (2,3).
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2) Hodge theory

Weierstrass fibrations — lattice polarized K3's
(based on Morrison-Vafa '96; Clingher-Doran '07, '10; A. Kumar '08)

Y2 = 4X3+ (at4+ct3>X

X — CP!:
n (t7+bt6+dt5)

¢ =0: No Wilson lines. Gauge group G = (Eg x Eg) X Zo.
sing. fibersof X : 21*® 41,
NS(X) = H@ Eg® Eg, signature:(1,17),
Tx = H?, signature: (2,2

¢ # 0: One Wilson line. Gauge group G = Eg x E7.
sing. fibersof X : [I*& " ®51,
NS(X) = H® Es® E;, signature: (1,16),
Tx = H?>q@ (-2), signature: (2,3).

For G = Spin(32)/Zy and G = Spin(28) x SU(2)/Zp: X --» Xa )




String duality and K3 surfaces from Seiberg-Witten curves
2) Hodge theory

Shioda-Inose correspondence

Def.: A Nikulin involution on a K3 surface X is an analytic
automorphism 5 : X — X of order two such that g*n = .

= [ has eight fixpoints, Y = )Z\//B is K3 surface,
Jp: X -—» Y degree-two rational map, p, : H*(X,Z) — HZ;
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2) Hodge theory

Shioda-Inose correspondence

Def.: A Nikulin involution on a K3 surface X is an analytic
automorphism 5 : X — X of order two such that g*n = .
= [ has eight fixpoints, Y = )Z\//B is K3 surface,

Ip: X --+ Y degree-two rational map, p. : H*(X,Z) — HZ;

Def.: A Nikulin involution is a Shioda-Inose structure if there is an

Abelian surface A such that Y = Kum(A) = Aﬁ\j_:/l} and
P« : Tx(2) — Ty is Hodge isometry.

2 2
Km(A)

Morrison '84: An algebraic K3 surface X has a Shioda-Inose
structure if there exists A and Hodge isometry Tx = Tp. }
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2) Hodge theory

Resulting picture for heterotic/F-theory duality
(based on Clingher-Doran '07, '10; A. Kumar '08)

’ c/z ‘ F-theory moduli for X — CP? ‘ heterotic moduli for A ‘

Tx = Ta = H?
NS(X) = H® Es ® Eg A=E,xE,
~ E E
_o| b2 EMED E: [Eo): Eslp)] € WP
d ~ 7724(p) 7724(0_) E;: [E4(U) : E6(U)]
(p.o) € F\SO(2,2)/(SO(2) x s0(2)) =\H x H
Tx = Ta = H*® (-2)
NS(X)=Ho E & E A = Jac C
N [h:la:ls: hol € WP, 4610
A0l T2 G, ¢ S ol | ek
B - B T | =&+ R, o > Cio
T= < vz ) € N\S0(2,3)/(S0(2) x SO(3)) = Sp(4,Z)\Ha
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2) Hodge theory

Calabi-Yau threefolds and 6d compactifications

Tx =Ta = H* & (-2)
NS(X)=H® E & E A = Jac CP
bily:ls: ho] € WP
oo 2~ &(r), b o~ Er), 522: %# 6[4 3]1/;4 (2,4,6,10)
~ ~ 10’ - ’
z#0 c = Cuo(r), d =~ Cu(r). lo = o + 592y ~ Cpy
= ( g ; ) € r\s0(2,3)/(s0(2) x 50(3)) = Sp(4,Z)\Ha
E —» X
. Y2 = ax+ (a(w) et +c(u) ) X
[t:1]€CP! - T +(t7 + b(u) £° + d(u) fs)
'L 0 0
CF' 5 [u1] a€ H(0(8)),b e H(0(12)), etc.

M.-Morrison ’'13: Construction of smooth Calabi-Yau threefolds
X — F1o from pencils of genus-2 curves confirms existence
heterotic quantum vacua and shows gauge group enhancement of
X, when family intersects H; + Hy.
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N = 2 String Compactification

@ 4d string compactifications arise in two ways (that are dual)

@ from F-theory on n-dimensional K3-fibered Calabi-Yau,
@ from heterotic strings on (n — 1)-dimensional elliptically
fibered Calabi-Yau.

@ Four-dimensional string compactifications:
include Donaldson theory/Seiberg-Witten theory of M*

o Effective field theory for 4d A/ = 2 supersymmetic Yang-Mills
theory can be described in terms of auxiliary family of elliptic
curves, called SW-curve (=rational elliptic surface).
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N = 2 String Compactification

@ Sen ['95] studied F-theory over a K3-surface in the special
point where K3 is the Zy-orbifold of torus T*.

@ Sen provided an embedding in F-theory of SW-curve.

@ In isotrivial case: SW-curve is rational elliptic surface with
2 Iy, the embedding was given by quadratic twist K3 with 4/7
(doesn't change j-invariant)

@ Masses of BPS states were computed in F-theory in terms of
period integrals of the holomorphic 2-form on the K3 surface.

e Goal: what Weierstrass elliptic K3 surfaces (=F-theory
vacua) are obtained when generalizing construction to rational
elliptic surfaces? what are the corresponding heterotic vacua?
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3) Examples from rational surfaces

Rational surfaces

o Rational Weierstrass elliptic surfaces S over CP1:

g€ H(OW). 1,y cpt.

. 2 _ 3 _
S: y =4x 82X — 83, g3 € HO(O(6)),

@ Consider rational elliptic surfaces with at most 3 singular
fibers, (#sings, rk(MW)) = (2,0),(3,0),(3,1),(3,2).

Examples:

@ SW-curve S for pure SU(2)-gauge theory:
Legendre family over the t-line,
t Hauptmodul for I'(2),
y? = x(x —1)(x — t)

m

sing | b b I5(= De)
0 1 00

sing h h /I(: DS)

m

@ Pencil related by 2-isogeny

”
o
=
8
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3) Examples from rational surfaces

Rational surfaces

Examples (cont’d):

@ Hesse pencil in P(1,1,1) over the t-line,
3
t> Hauptmodul for I'g(3), Esng ‘ I

I IV*(= Es)

X436 403+t =0 — 0

@ Hypersurfaces in P(1,1,2) over the t-line,
t* Hauptmodul for Ig(2),

Eing | h b 1I"(= E7)
4 4 2 —1/4 _ sing | 1112 7
X{ +x5; +x3+t x1x0x3 =0 I
e Hypersurfaces in P(1,2,3) over the t-line,
. Eng | i h 11*(= Eg)
X3+ x4+t xx0x3=0 tsmgo T .

432
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3) Examples from rational surfaces

Rational surfaces and their periods

e Rational Weierstrass elliptic surfaces S (#sings < 3)

. 2_ 4.3 _ g € H(04)), .. . 1
S: y'=4x"—g@x—g3, a5 € H(O(6)). [t:1] € CP".

e Rational surfaces (up to x-transfer):

- — modular
isotrivial
N L h I}
ool b kI3
b IV IV* 2 2 2
L IV
o Ml II* .
. Lol I
b Il P
v v oI vt .
In 1 Ivr ih v
I
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3) Examples from rational surfaces

Rational surfaces and their periods

e Rational Weierstrass elliptic surfaces S (#sings < 3)
g € H(O(4))

S:y =4 —mx g, * [t:1] € CPL,
y &. & g3 € HO(O(6))’ [ ]
e Rational surfaces (up to x-transfer):
isotrivial G 1 r modular G r
* * /1 Il II r0(4) 0
b5 Zy | O 3
b h Iy |T(@) |0
h IV IV*|Z3|0 )
* L L IV r0(3) 0
b 1| Z4 | O *
. Loho | Te(2) |0
b 111l Ze | O A 0
v IV IV | Z3]|2 1 h |
I oIvE |z | 2 Inm L v+ |r 1
: A

G C SL(2,7Z) generated monodromy group, r = rk(MW?)
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3) Examples from rational surfaces

Rational surfaces and their periods
e Rational Weierstrass elliptic surfaces S (#sings < 3)

g € H(O(4)),

- 5 3 1
S 2= _ _ t:1] e CPL
S:y A4x> —grx — g3, a5 € H(O(6)). [ | €
o Rational surfaces (up to *-transfer):
isotrivial G [r modular | G s
T Tz o h h 17 |[To®) |0
o /(i/ R/* Zs | 0 hoh L 1 T(2) |0
o Ml HI* | Z4]0 b VT ITo(3) | O
PO TR Al I | Te(2) | 0
IV IV IV | Z3]2 h b1 _ r2 0
I IvE | Ze | 2 i ve) T !
6 I T 1

@ Write down Picard-Fuchs first order linear system satisfied by
periods of % and X;"X over cycles on the fibers:

Et:( _fAt }/’ :ftx;lx>
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3) Examples from rational surfaces

Rational surfaces and their periods

e Rational Weierstrass elliptic surfaces S (#sings < 3)
g € HY(O(4)),

S:y=4X—mx -, t:1] € CPL,
’ exX=8 gew(o),
e Rational surfaces (up to *-transfer):
isotrivial G I r modular G r
5l ho h I [T |0
Iy /0 I0 Zs | 0 )
L b 12 |'(2) 0
b IV IV*|Z3 |0 )
* I3 /1 v r0(3) 0
lo 1 HI* | Z4 | O :
* L h H* | Te2) |0
b Il 11" | Ze |0 A 0
v IV IV |Z3]|2 1 K |0
: 0oL 1

@ Defines a rank-two Fuchsian system with flat (=integrable)
meromorphic connection over base:

d_ - _Bo() Bl(t
SI=A0T, Alt)=— ZB
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3) Examples from rational surfaces

Rational surfaces and their periods

o Rational Weierstrass elliptic surfaces S (#sings < 3)

€ H(0(4)), ., .
gj c H(O(6)). [t:1] € CPL.

S: y?’=4x—gx—gs,

e Rational surfaces (up to x-transfer):

modular o
L L ;|12
L b |12
KohoIVe|1/3
Lok | 1/4
Lok 1| 1/6
I L Iv*|1/6 1/3
oL | 112 | 1/3

isotrivial o

[ S 4 1/2
I IV Iv*|1/3
b 1 HI* | 1/4
b 11 11" | 1/6
v Iv Iv |1/3|2/3
i nIve|1/6 | 2/3

oo oolx
oo oo olx

Solutions to Picard-Fuchs rank-2 first order linear system:
w = tT3u/2 1Fo(£pu; |t) w=tr/? oF1 (1,1 — p— k; 1 — k|t) J
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3) Examples from rational surfaces

One-parameter families of K3 surfaces

@ Construction 1: quadratic twist with polynomial h

Xi1=5,: Y2 = 4X3-WPgopX-—hg
_ \:
S:y? = 4x3—gx—g3.
@ Twist around t = oo introduces fibers of type I
o Parameter defines position of additional /5, h=t(t—A)

@ l-parameter families of lattice-polarized K3 surfaces,
isotrivial/modular case: Picard rank 18/19
o Example: Tx = (2)92 @ (-2), A€ {0,1}:

Eig|h b I Eag |15 b 5 &5
t ‘ 0 1 o© t ‘ 0 1 oo A
S is rational X; is K3

@ For A =1 we obtain all Weierstrass elliptic K3 surfaces with 3
singular fibers.
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3) Examples from rational surfaces

One-parameter families of K3 surfaces

@ Construction 1: quadratic twist with polynomial h

Xi=S54: Y2 = 4X3-PopX-hg
_ \
S: y?2 = 4x3—g@x—g3.
@ 2 I3's, h=t(t—A), 2-form: dt/\%: L gt A &

V() y
@ Represent K3-periods as Euler transforms
ax _ ot 1
[, dt A= [ol dt ok
@ K3-periods solve a rank-4/rank-3 linear system in dx

Solutions to the rank-4/rank-3 integrable linear system of K3
periods:
2F1 (L, u+5i1+5]4)

1—-r

77717 -k
W = w =A—"/2 3F2 3 K

1-3,1-x

:
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3) Examples from rational surfaces

One-parameter families of K3 surfaces

Proposition (M.-Doran)

@ The periods of the seven (modular) families of Weierstrass elliptic
K3 surfaces of Picard rank 19 satisfy Clausen'’s identity:

1—k 2
—k/2 By =55 1=p—rk _ = .
A=/ 3F2< A) — (A 1o F (g, = ”,17%|A)>

1-%,1-k
@ There is a fundamental set of solutions {x1,x2,x3} such that

I quadric surface series
2 2 7 S
X2+ x5 — X; 1,1,1 (2n)" A
1/2 1 2 3 F. 27202 |a) = _
/ 2x2+2x3 —2x3 320 ,,Z::O nte 29

1/3 | 4x2+3x3 —3x3 3F (2n)! (3n)!

5
I
<}

!
18
g
»

3

1/4 | 4x2+2x3 —2x3

5
Il
o
3
=
S
|
3

(6n)! A"
n!3(3n)! 26n33n

I
18

1/6 X12+4X227X§ 3F2

>

>
N i’ i

Il
018
3
Tw

5

)
3=
)
5

w
1
b N N
ST
BN
-
Blw
>

5
Il
<}
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3) Examples from rational surfaces

One-parameter families of K3 surfaces

@ Construction 2: double cover branched at t =0 and t = A:
Xo=Spa: Y2 = 4X3—s*g(t(s)) X — s° g3(t(s))

_ {
S: Y2 =

(s+A/4)?
S

43— gz(t)X —g3(t) .

1
t(t—A)
@ Example of 1-param. family of lattice-polarized K3 surface of

Picard rank 19, Tx = H & (—2), A ¢ {0,1}:

@ with t =

ax _ dx
wehaveds/\y— dt/\y

Eng | L h 1I* Egng | I 24 2101
t [0 I o s |A/M4 §+3E£VAFT 0,0
S is rational X, is K3

o for p=1/6,1/4,1/3,1/2,k =0and p=1/12,k =1/3 we
obtain one-parameter families with M, = H® Eg ® Eg ® (—2n)
lattice polarization for n =1,2,3,4 and n = 6.
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3) Examples from rational surfaces

One-parameter families of K3 surfaces

Proposition (M.-Doran)

@ The two constructions give rise to degree-two rational maps
Xy --» Xy (for all 13 cases) that leave the holomorphic two-form
invariant.

@ The Picard-Fuchs differential equations of each pair X,, X1 coincide.

Remarks:

@ The periods of the families with M, lattice polarization for
n=1,2,34 and n = 6(?) agree with the results of Lian,
Yau ['96], Dolgachev ['96], Verrill, Yui['00], Doran ['00],
and Beukers, Peters ['84] (7).

@ Constructions generalize to two-parameter families of

lattice-polarized Weierstrass elliptic K3 surfaces:
isotrivial/modular case for x = 0: Picard rank 16/18.
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3) Examples from rational surfaces

Two-parameter families of K3 surfaces

2 _ B2 .
16 5°+8 (A+B) s+(A—B) in X, s.t.

Set h(t) =(t—A)(t—B)in Xy and t = Tos
dsn XL g &
Y h(t) y

Proposition (M.-Doran)

@ The two constructions give rise to degree-two rational maps
Xy --» Xy (for all cases with k = 0) that leave the holomorphic

two-form invariant.
@ The Picard-Fuchs linear systems for each pair X5, X1 coincide.

@ K3-periods solve a flat rank-6/rank-4 linear system in Oa, Og in the
isotrivial/modular cases.
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3) Examples from rational surfaces

Two-parameter families of K3 surfaces

Proposition (M.-Doran)

@ The two constructions give rise to degree-two rational maps
Xy --» Xy (for all cases with k = 0) that leave the holomorphic
two-form invariant.

@ K3-periods solve a flat rank-6/rank-4 linear system in Oa,dpg in the
isotrivial/modular cases.

o Isotrivial cases (1 # 3,k =0):

1 11
F1<,u,2 2 1|A B)@Fl( ,LL,2 2 1|A B>

@ Modular cases (k =0):

1 Al
Q,.(A,B) = @Fz (Niz’ﬂ;172ﬂ 1- B’B)
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3) Examples from rational surfaces

Two-parameter families of K3 surfaces

Remarks:
o Fi(a;B,0;7) and Fa(w; B8, 5';,7') are the Appell
hypergeometric functions in two variables.
o They satisfy equations of a linear system of rank 4 or 3:
A(L = A)Fas+pi(AB)Fas + (v —(a+8 +1)A) Fa—§ BFs—af F=0,
B(1— B) Fas + pi(B,A) Fag + () = (a+8'+ 1) B) Fs — 8/ AFs — a B'F=0.
e Example (u=1/6): M = H @ Eg @ Eg-polarized case,

Eag | 2h 20 2 si Eag |26 1° 205
s |t(s)=0 t(s)=1 0,00 t |01 oo AB

X is M-polarized K3 Xi is Kum(E x E)

@ Examples realize elliptic fibrations J3, J4, J6,J7,J11 On
Kum(E; x Ep) from Oguiso ['88].
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3) Examples from rational surfaces

Two-parameter families of K3 surfaces

Remarks:

e F; satisfies Quadratic Condition (cf. Sasaski, Yoshida ['88]):
fundamental solutions (x1, X2, X3, x4) are quadrically related,
solution surfaces S C P3 reduces to P! x P!

o Clausen-type equation:
oFy (4, E5 1‘X>
1
2F1 (b, B+ %‘Y)
2 2
where x(1 —y) = <1f;'_35> , y(1l—x) = (ﬁ) .

@ F; satisfies linear and quadratic transformations (symmetries)

(generalizing transformations for 2f):
linear: Q,(A, B) = Q,(B, A)

g7 P2 (i3, 1,201 - 5, 5) =




String duality and K3 surfaces from Seiberg-Witten curves
3) Examples from rational surfaces

Two-parameter families of K3 surfaces

Remarks:

e F; satisfies linear and quadratic transformations (symmetries)
(generalizing transformations for 2F7):

2B 1/2 -
1—A—B> Q1/4(/47 B)

2 2
: A A—B+1 > A-B-1
with A = (47841)" B = (4551)

o If we specialize A= (\/4)?, B =1+ A then we obtain

quadratic: Q,5(A, B) = (

12
Q1/2(A, B) = Qy4 (0, (%)4> = 3F2< 44

for the period of the sub-family p = %, k = 0 (agrees with
Narumiya, Shiga ['01]) which is birational to

fz{xyz(x+y+z+A)+1:0}CP3,
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3) Examples from rational surfaces

Periods of 3-parameter families of K3 surfaces

@ There is only one family where the construction of X; can be
turned into a 3-parameter family of K3 surfaces with lattice
polarization of Picard-Rank 17: u = %, k=0.

e Use h(t) = (t — A)(t — B)(t — C) to obtain linear system of
rank 5 in A, B, C for the K3-periods on X;
= specialization of Aomoto-Gel'fand HGF of type (3,6)

1
E(3,6) <a,- =51y, v,0, W>
where u = (%) %,V:%,W:B.

@ Linear system specialization of the one in Matsumoto et. al
['93] for a family of K3 surfaces of Picard rank 16 associated
with six lines in the complex plane, no three of which are
concurrent.
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Kummer surfaces from SU(2)-Seiberg-Witten curve

Proposition (M.-Doran)

® The family X; =S, — CP' (u=1/2,k =0) is a family of
Jacobian K3 surfaces with N-polarization and N+ = H?(2) @ (—2).

® There is a family X, — CP* obtained from the covering map
; 2i
t=(Cs*—B)/(s* - 1), &i(t) — &i(t(s)) W (t(s)) ((s* —1)*/s)".
o X; = Kum(A) where

p | parameter | A equation el cpEra
17 | uyv,w JacC® | y2=x(x—1)(x—A1)(x—X2)(x—A3) (2)\Hz
18 u,w,v=0 Ey X Ey y?:(2x,-—1) [(4x,-+1)2+9r,-] M\HxH
19 | u,v=0,w=1 ErxE | yi=(2x1—1)[(4x1+1)*+9r] Mo(2)\H

Mayr, Stieberger ['95], Kokorelis ['99]: moduli space of
genus-two curves with level-two structure = moduli space of
N = 2 heterotic string theories compactified on K3 x T2 with one

Wilson line.
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