


The First(?) Routing Problem











The Travelling Salesman Problem









Handling Large Graphs:
An Enduring Problem

As far as the problem of the seven bridges of
Konigsberg is concerned, it can be solved by
making an exhaustive list of all possible routes,
and then determining whether or not any route
satisfies the conditions of the problem. Because
of the number of possibilities, this method of
solution would be too difficult and laborious, and
in other problems with more bridges it would be
impossible.

Euler, 1736

(in Latin)
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A Technique: Polyhedral Combinatorics

The Colouring ILP

χ(G) = min ΣS∈S(G) xS

subject to:
∀v ∈ V : Σv∈S xS = 1
x ≥ 0, x integer.

S(G): the stable sets of G.

The Colouring LP

χf (G) = min ΣS∈S(G) xS

subject to:
∀v ∈ V : Σv∈S xS = 1
x ≥ 0.

χf (C5) = 2.5.
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A Second Technique:
Global Results via Local Analysis

Structural Decomposition

The Probabillistic Method
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Lessons from Vasek I

Look for what Hilbert calls

the numerous and
surprising analogies
and that apparently
prearranged harmony
which the mathematician
so often perceives



Lessons from Vasek II

Write, and then rewrite,
and rewrite and rewrites
and rewrite until you get it
right

lpbook









Colouring Perfect Graphs

The fractional chromatic number of a perfect
graph G is ω(G).

Furthermore, every colour class of an optimal
fractional colouring meets every clique of G.

Given an optimal fractional colouring, rip out a
colour class and recurse.
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Fractionally Colouring Perfect Graphs

The Stable Set Polytope of G consists of those
vectors which are convex combinations of
characteristic vectors of its stable sets.

A graph has a fractional β- colouring precisely if
(1
β , ...,

1
β ) is in its stable set polytope.

A vector x is in the stable set polytope of a
perfect graph G precisely if for every clique C,
the sum of xv over v in C is 1 (Chvatal, 1974).
Can find a fractonal colouring of a perfect graph
in polynomial time (Grotschel, Lovasz, &
Schrijver, 1979).
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Hadwiger’s Conjecture

If G contains no Kl model then it has an l − 1
colouring.
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A Fractional Hadwiger’s Conjecture

Theorem: If G has no Kl model then
χf (G) ≤ 2l − 2 (R. & Seymour, 1998).

Theorem: Every graph arises from a
triangulated graph H by substituting a
connected graph Fv for each vertex v of H such
that for each v , Fv has a stable set containing
half of its vertices.
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1. Special Probability Distributions
2. Recursive (List) Colouring
3. Greedy Completion
4. Structural Decomposition
5. Strong Concentration Inequalities
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Some Results

1. ω + C colouring total graphs (Molloy & R. 1998).

2. (3+ε)∆(G)
2 Colouring the Square of A Planar G

(Havet,McDiarmid,R. & Van Den Heuvel 2007).
3. Determining The Threshold k∆ for which

χ > ∆− k∆ is a local property in graphs of
maximum degree ∆ (Molloy & R. 2001/in press).
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