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Conflict Graphs, Stable Sets, and Colouring

A subset S of V is stable if there is no edge xy
withx,y € S

x(G),the chromatic number of G, is the
minimum number of stable sets in a partition of
V(G).



Handling Large Graphs:
An Enduring Problem

As far as the problem of the seven bridges of
Konigsberg is concerned, it can be solved by
making an exhaustive list of all possible routes,
and then determining whether or not any route
satisfies the conditions of the problem. Because
of the number of possibilities, this method of
solution would be too difficult and laborious, and
in other problems with more bridges it would be
impossible.

Euler, 1736



Handling Large Graphs:
An Enduring Problem

As far as the problem of the seven bridges of
Konigsberg is concerned, it can be solved by
making an exhaustive list of all possible routes,
and then determining whether or not any route
satisfies the conditions of the problem. Because
of the number of possibilities, this method of
solution would be too difficult and laborious, and
in other problems with more bridges it would be
impossible.

Euler, 1736 (in Latin)



A Framework: Computational Complexity



A Framework: Computational Complexity

P v. NP-complete
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A Technique: Polyhedral Combinatorics

The Colouring ILP The Colouring LP

X(G) = minTgesia) Xs X' (G) = min Lgesa) Xs

subject to: subject to:
YweV: Y,cs Xs=1 YweV: Y,cs xgs=1
x > 0, x integer. x > 0.

S(G): the stable sets of G. x/(Cs) = 2.5.
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Global Results via Local Analysis

Structural Decomposition

The Probabillistic Method
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Two Local Bounds on Colouring

w(@) is the size of the largest clique in G

the neighbourhood of v, denoted N(v) contains
those vertices joined to v by an edge

the degree of v, denoted 4(v), is [N(v)|
A is the maximum degree of a vertex in G

w(G) < X(G) < A(G) + 1.
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Lessons from Vasek |

Look for what Hilbert calls

the numerous and
surprising analogies

and that apparently
prearranged harmony
which the mathematician
S0 often perceives




Lessons from Vasek Il

Write, and then rewrite,
and rewrite and rewrite
and rewrite until you get it
right
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Perfect Graphs

» For S C V(G), the subgraph G[S] induced by S
has vertex set S and contains all the edges of G
with both endpoints in S

» A graph G is perfect if each of its induced
subgaphs H satisfies x(H) = w(H)
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Colouring Perfect Graphs

The fractional chromatic number of a perfect
graph G is w(GQ).

Furthermore, every colour class of an optimal
fractional colouring meets every clique of G.

Given an optimal fractional colouring, rip out a
colour class and recurse.
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Fractionally Colouring Perfect Graphs

The Stable Set Polytope of G consists of those
vectors which are convex combinations of
characteristic vectors of its stable sets.

A graph has a fractional - colouring precisely if
(3, %) is in its stable set polytope.

A vector x is in the stable set polytope of a
perfect graph G precisely if for every clique C,
the sum of x, over vin Cis 1 (Chvatal, 1974).
Can find a fractonal colouring of a perfect graph
in polynomial time (Grotschel, Lovasz, &
Schrijver, 1979).
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Berge Graphs and the SPGC

For every k > 2, Co,1 is imperfect, as is its
complement Cox 1

v

v

A graph is Berge if it contains neither Cox1 nor
Cok+1

SPGC(Berge 1961): If G is Berge, it is perfect.

v

or equivalently: a graph is minimally imperfect
precisely if it is Coxs1 or Cox+1 for some k > 2.

v
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G is perfect precisely if G is. (Lovasz 1972)

The proof used the fact that no minimal
imperfect graph contains a homogeneous set.
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No minimal imperfect graph has a clique cutset.
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Triangulated Graphs

G is triangulated if it contans no Cywith k > 4 as
an induced subgraph.

Theorem: Every triangulated graph is a clique or
has a clique cutset(Dirac 1961)

Corollary: Every triangulated graph is perfect.
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Theorem: No minimal imperfect graph has a
star cutset (Chvatal 1985)
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Star Cutsets and Strongly Berge Graphs

G is Strongly Berge if it contains no C;, or C, for
r>>95

Thm: If G is a Strongly Berge and [V(G)| > 2,
then G or G has a star cutset. (Hayward 1986)

Corollary: Every Strongly Berge Graph is
perfect.
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skew cutset (Chvatal 1985)



Skew Cutsets and Even Pairs

Conjecture: No minimal imperfect graph has a
skew cutset (Chvatal 1985)

Theorem: No minimal imperfect graph has an
even pair(Meyniel 1987) € v € ¢~/ "1mn N e
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B. AL Read

Graph Minors I:




Ki-model Free Graphs



Ki-model Free Graphs
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Ki-model Free Graphs

o

A K; model consists of / vertex disjoint trees
every two of which are joined by an edge.

If G arises via clique identification graphs
without K; models then it also has no K; model.
G has no K5 model precisely if it akses via
clique identification from graphs which are
planar or one special 8 vertex graph.
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Hadwiger’'s Conjecture

If G contains no K; model then it has an / — 1
colouring.
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A Fractional Hadwiger’s Conjecture

Theorem: If G has no K; model then
x'(G) < 2/ — 2 (R. & Seymour, 1998).



Algorithms and Combinatorics

Graph
Colouring and
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Method
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A Global/Local Lemma

If Ais a family of events satisfying:
Z Prob(E) < 1
EcA

then with positive probability none of the (bad)
events in A occurs.
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Bounding x using '

X(G) < [log [V(G)[X'(G)] + 1.

There is a probability distribution on stable sets

s.t.
1

X'(G)

Prob(v € S) =

Pick [log |V(G)|x'(G)] + 1 random stable sets.

Prob(miss v) = (1 — &;)leg V11 < 1

Prob(have a colouring) > 0.



Finding Nearly Optimal Colourings



Finding Nearly Optimal Colourings

1. A Local Local Lenma



Finding Nearly Optimal Colourings

1. A Local Local Lenma
2. Bells and Whistles



The Lovasz Local Lemma

If Ais a family of events satisfying:

for each F in A there exists S(F) s.t. Fis
mutually independent of A — S(F), and

D _ees(F) Prob(E) < 1/4

then with positive probability none of the (bad)
events in A occurs.
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Bells and Whistles

. Special Probability Distributions
Recursive (List) Colouring
Greedy Completion

Structural Decomposition

Strong Concentration Inequalities

Al A
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Some Results

1. w + C colouring total graphs (Molloy & R. 1998).

2. 842G Golouring the Square of A Planar G

(Havet,McDiarmid,R. & Van Den Heuvel 2007).
3. Determining The Threshold ka for which

x > A — kp is a local property in graphs of

maximum degree A (Molloy & R. 2001/in press).
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Some Thoughts on Writing A Thesis



