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Aim of the project
Modelling electricity futures

Futures contract

A futures contract maturing at time T on an asset S is a traded asset with
“price” F (t, T ) such that the futures contract can be entered at zero cost at
any time; a holder of the contract receives payments corresponding to the
price changes of F (t, T). At maturity T, F(T,T) = St.

Let t denote the current time and T the time of maturity/delivery. How can we
model the futures/forward price F(t, T)?

[J Spot-based approach : Let S denote the underlying spot price. Then

F(t.T) =E?(St|R).

[J Reduced-form modelling : As in the Heath-Jarrow-Morton (HIM)
framework, one can model F (t, T ) directly.
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Stylised facts of electricity futures

[J Non-Gaussian, (semi-) heavy-tailed distribution
[ Volatility clusters and time-varying volatility
[ Strong seasonality (over short and long time horizons)

[1 Presence of the “Samuelson effect”: Volatility of the futures contract
increases as time to delivery approaches.

[J Electricity is essentially not storable [ spikes, negative prices in the spot

[J High degree of idiosyncratic risk [ use random fields!
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High degree of idiosyncratic risk [] use random fields!

Use ambit fields to model electricity futures!
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Ambit stochastics

[J Name for the theory and applications of ambit fields and ambit processes

[ Probabilistic framework for tempo-spatial modelling

[J Introduced by O. E. Barndorff-Nielsen and J. Schmiegel in the context of
modelling turbulence in physics.
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What is an ambit field?

(1 Aim: Model real-valued tempo-spatial object Y;(x ), where t € R is the
temporal and x € IRY the spatial variable (d € IN).

[J “ambit” from Latin ambire or ambitus: border, boundary, sphere of
influence etc.

1 Define ambit set A;(x): Intuitively: causality cone .

[J Ambit fields: Stochastic integrals with respect to an'independently
scattered, infinitely divisible random measure L:

Ye(x) = _/At(x) h(x,t;& 8)o(E, s)L(dE ds)

[ Integration in the L?-sense as described in Walsh (1986).
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The integrator is chosen to be a Lévy basis

[1 Notation: B(IR) Borel sets of R; 3, (S) bounded Borel sets of S € B(IR).

Definition 1

Afamily {L(A) : A € B,(S)} of random variables in R is called an R-valued
Lévy basis on S if the following three properties hold:

@ The law of L(A) is infinitely divisible for all A € 5, (S).

A IfAL, ..., An are disjoint subsets in B, (S), then L(A;), ..., L(An) are
independent.

© If Ay, Ay, ... aredisjoint subsets in B, (S) with [J{”; Aj € By(S), then

LU, A) =X, L(A), as., where the convergence on the right hand
side is a.s..

[J Conditions (2)&(3) define an independently scattered random
measure .
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Cumulant function

[0 The a cumulant function of a homogeneous Lévy bases is given by

C(Z L(A)) = Log(E(exp(iCL(A))
= {iga — %CZb + /]R (eiij —1- iCZH[—l,l](Z)) v(dz)] leb(A),

where leb(-) denotes the Lebesgue measure, and where a € R, b > 0
and v is a Lévy measure on R.

[The logarithm above should be understood as the distinguished logarithm, see e.g. Sato
(1999).]

[l The characteristic quadruplet associated with L is given by (a, b, v, leb).

[1 We call an infinitely divisible random variable L" with characteristic triplet
given by (a, b, v) the Lévy seed associated with L.

(1 Note: L((0O,t]) = L; is a a Lévy process (for a hom. Lévy basis).
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The model

[1 Consider a market with finite time horizon [0, T *| for some T* € (0, ).

[J Need to account for a delivery period: Model the futures price at time
t > 0 with delivery period [Ty, Tp] fort < T; < T, < T* say.

[l Model the futures price with delivery period [Ty, T2] by

Ty
/ F(t,T)dT, )

Fi(T1,T2) = .
sl

To-Ta
where F (t, T) is the instantaneous futures price.
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[J Need to account for a delivery period: Model the futures price at time
t > 0 with delivery period [Ty, Tp] fort < T; < T, < T* say.

[l Model the futures price with delivery period [Ty, T2] by

1 T2
Fi(Ty, T2) = T, T, /T F(t,T)dT, (@
sl

where F (t, T) is the instantaneous futures price.

Model definition under risk neutral probability measure

Under the assumptions (A.1) - (A.7):

Ft,T)=A(T)+ | k(T;¢s)o(¢ s)L(dE,ds). 2

At

Musiela parametrisation with x = T —t and f;(x) = F(t,x +1):

f(X) = At +x +/ X +t;,8)0(E, s)L(dE, ds). 3)
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Model assumptions

A.1 L is a a homogeneous, square-integrable Lévy basis on IR?, which has

zero mean; its characteristic quadruplet is denoted by (a, b, v, leb).
A.2 The filtration {7 };c[_7- 7+ is initially defined by Fx = Ny 72, /.,
where 70 = o{L(A,s) : A€ B, ([0, T*]), =T* < s < t}, which is
right-continuous by construction and then enlarged using the natural
enlargement.

A.3 The positive random field ¢ = (¢, s) : QO x R? — (0, c0) denotes the
so-called stochastic volatility field and is assumed to be independent of
the Lévy basis L.

A.4 The function k : [0, T*] x [0, T*] x [-T*, T*] — [0, o) denotes the
so-called weight function;

A5 Foreach T € [0, T "], the random field
(k(T;8,5)0(8,S))(£5)c(0,74x [T+ T+ IS assumed to be predictable and to
satisfy the following integrability condition:

E U K2(T ;¢ 5)02(¢,s) déds | < oo. @)
[-T*T*]x[0,T%]
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Model assumptions cont'd

A.6 We call the set

[0, T7] % [T]
C 0, T* x [-T*

A ~{@s):0<g<T T s <y o
T
the ambit set. Time to delivery &

'r *

—T 0 t T* Time's
A.7 The deterministic integrable function A : [0, T*| — (0, c0) denotes a
seasonality and trend function.
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Recap: The model

Let0 <t <T < T*. Under the assumptions (A.1) - (A.7) the futures price

under the risk-neutral probability measure is defined as the ambit field given
by

Ft,T) :A(T)+/A k(T 8)0(E,s)L(dE, ds). ©6)

Time to delivery ¢

'r *

_T* 0 t T* Times
Figure: The ambitset A; = [0, T*] x [-T* t].
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Important properties of the model

Proposition 2

For T < [0, T*], the stochastic process (F (t, T ))o<i<T iS a martingale with
respect to the filtration {7 }ic(o,7)-
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For T < [0, T*], the stochastic process (F (t, T ))o<i<T iS a martingale with
respect to the filtration {7 }ic(o,7]-

Proposition 3

For G; = o{c(¢&,s), (& s) € A}, the conditional cumulant function we have

C7 (¢t (x)) := Log (E (exp(igfi(x))[ Gt))
:iz;A(t+x)+/A C(Zk (X +t,6.5) 0 (&), L) dzds,

where L' is the Lévy seed associated with L.

Example 4

If L is a homogeneous Gaussian Lévy basis, then we have

C(Zk (X +:E5)0(Z,8).L') = iZA(t +x) — %gzkz (X+1:65) 02 (E,5).
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Correlation structure

[J Note that our new model does not only model one particular futures
contract, but it models the entire futures curve at once.

O Let0O<t<t+h<T*and0 <x,x' <T*, then

Cor (f(x), fran(x”))
k-1 / K(x+1t,&s)k(X' +t+h,&s)E (UZ(C,S)) ddds,
J A

where

K=/ [ et 8 9B (02(E,5) dids

\//A k2(x'+t+h,¢ s)E(c?(¢,s))déds
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Examples of weight functions

[J Consider weight functions which factorise as
k(x+t;&,s) =D()¥(x+t,s), (7)

for suitable functions ¥ and @. [In the case that ® = 1 and there is no
stochastic volatility we essentially get be back the classical framework.]

[l OU-type weight function: ¥(x +1t,s) = exp(—a(x +t —s)), for some
x> 0.

[J CARMA-type weight function: ¥(x +t —s) = b’ exp(A(x +t —s))ep;

[0 Bjerksund et al. (2010)-type weight function: ¥ (x +t,s) =
a,b>0

a
X+t—s+b’ for

[J Audet et al. (2004)-type weight function:
O ¥Y(x+t,s) =exp(—a(x +t—s)) fora >0,
0 ®(Z) = exp(—pg), for p > 0
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Example: Gaussian ambit fields

(a) Exponential weight function (b) Sum of two exponential weight
functions

(c) Bjerksund et al.-type weight func- (d) Gamma-type weight function
tion
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Implied spot price

[J By the no-arbitrage assumption, the futures price for a contract which
matures in zero time, x = 0, has to be equal to the spot price, that is,
ft (O) = 5. Thus,

s :A(t)—l—/A K(t; &, s) (2, s)L(dE, ds).
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Implied spot price

[J By the no-arbitrage assumption, the futures price for a contract which
matures in zero time, x = 0, has to be equal to the spot price, that is,
ft (0) = 5. Thus,

s :A(t)+/A K(t; &, s) (2, s)L(dE, ds).

[J In the Gaussian case, we get the following result:

law

t
s, ' A(t)+/ ¥ (t; 8)wsdWs,
T

assuming that k(x +t;¢,s) = ®(&)¥(x +1t,s),
w?2 = [ ®?(¢)o?(¢,s)d¢ and where W is a Brownian motion.

[J Null-spatial case of ambit field: Volatility modulated Volterra process,
Lévy semistationary process. (Fit energy spot prices very well!)
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Simulated futures curve

(g) Ambit field with stochastic volatility (h) Seasonality field
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Simulated futures curve cont’d

56
54
52

50

(i) Futures price without stochastic volatility  (j) Futures price with stochastic volatility
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Samuelson effect

[1 Samuelson effect: The volatility of the futures price increases when the
time to delivery approaches zero.

[ Also, the volatility of the futures converges to the volatility of the spot
price.

[J The weight function k plays the role of a damping function and is
therefore non-increasing in the first variable and ensures that the
Samuelson effect can be accounted for in our model.

Proposition 5

Under suitable conditions (given in our paper) the variance of the futures price
fi(x), given by

v (%) = Var (f(x)) :c/A k2(x +t:¢,5)E (¢%(¢, ) ) dds,

is monotonically non-decreasing as x | 0. Further, the variance of the futures
converges to the variance of the implied spot price.
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Samuelson effect: Example for different choices of the
weight function

Example 6

Suppose the weight function factorises as mentioned before and there is no
stochastic volatility. Then the variance of the futures price is given by

t T
ve(x) :c’/ ¥2(x +t,s)ds,  where c’:C/ ?(g)dE.
e 0

This implies that in the context an exponential weight, we get

1 .
vi(x) = C,ﬂ (e—21xx _ e 2u(x+t4T )) '

and in the context of the Bjerksund et al. (2010) model we have

vi(x) = c'a? S ! .
Xx+b x+t+T*+Db
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Change of measure

[J Next we do a change of measure from the risk-neutral pricing measure to
the physical measure.

Proposition 7

Define the process

M¢ = exp (/A ) L(dg,ds)—/ C(—ie(g,s),L’)dgds>. @)

At

The deterministic function 6 : [0, T*| x [-T*, T*] — R is supposed to be
integrable with respect to the Lévy basis L in the sense of Walsh (1976).
Assume that

E (exp (/ C(—if(s,¢), L’)d;‘ds)) < oo, forallt € Rys. 9)
At
Then M{ is a martingale with respect to 7; with E[MJ] = 1.
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Change of measure cont’d

[1 Define an equivalent probability P by

L — (10)

for t > 0, where the function 6 is an additional parameter to be modelled
and estimated, which plays the role as the market price of risk

[1 We compute the characteristic exponent of an integral of L under P.

Proposition 8

For any v € IR, and Walsh-integrable function g with respect to L, it holds that

LogEp [exp (iv/ g(¢,s)L(d¢, ds))]
_/ (va(Z.s) —i8(Z,s), L") — C(—i6(¢,s), L") dds.

22125



Summary of key results

[J Use ambit fields to model electricity futures.

[J Our model ensures that the futures price is a martingale under the
risk-neutral measure.

[J Studied relevant examples of model specifications.

[J New modelling framework accounts for the key stylised facts observed in
electricity futures.

[ Futures and spot prices can be linked to each other within the ambit field
framework (Samuelson effect).

[J Change of measure.

Further results not mentioned today:
[J Geometric modelling framework

[J Option pricing based on Fourier techniques.

[0 Simulation methods for ambit fields.
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[] Detailed empirical studies.
[] Inference methods for ambit fields.

[0 Need for more efficient simulation schemes.
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