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Aim of the project
Modelling electricity futures

Futures contract
A futures contract maturing at time T on an asset S is a traded asset with
“price” F (t ,T ) such that the futures contract can be entered at zero cost at
any time; a holder of the contract receives payments corresponding to the
price changes of F (t ,T ). At maturity T , F (T ,T ) = ST .

Let t denote the current time and T the time of maturity/delivery. How can we
model the futures/forward price F (t ,T )?

➤ Spot-based approach : Let S denote the underlying spot price. Then

F (t ,T ) = E
Q(ST |Ft ).

➤ Reduced-form modelling : As in the Heath-Jarrow-Morton (HJM)
framework, one can model F (t ,T ) directly.
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Stylised facts of electricity futures

➤ Non-Gaussian, (semi-) heavy-tailed distribution

➤ Volatility clusters and time-varying volatility

➤ Strong seasonality (over short and long time horizons)

➤ Presence of the “Samuelson effect”: Volatility of the futures contract
increases as time to delivery approaches.

➤ Electricity is essentially not storable ➠ spikes, negative prices in the spot

➤ High degree of idiosyncratic risk ➠ use random fields!
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➤ Electricity is essentially not storable ➠ spikes, negative prices in the spot

➤ High degree of idiosyncratic risk ➠ use random fields!

Use ambit fields to model electricity futures!
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Ambit stochastics

➤ Name for the theory and applications of ambit fields and ambit processes

➤ Probabilistic framework for tempo-spatial modelling

➤ Introduced by O. E. Barndorff-Nielsen and J. Schmiegel in the context of
modelling turbulence in physics.
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What is an ambit field?

➤ Aim : Model real-valued tempo-spatial object Yt (x), where t ∈ R is the
temporal and x ∈ R

d the spatial variable (d ∈ N).

➤ “ambit ” from Latin ambire or ambitus: border, boundary, sphere of
influence etc.

➤ Define ambit set At (x): Intuitively: causality cone .
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t
′

•

•
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′

-

6

➤ Ambit fields: Stochastic integrals with respect to an independently
scattered, infinitely divisible random measure L:

Yt (x) =
∫

At (x)
h(x , t ; ξ, s)σ(ξ, s)L(dξ, ds)

➤ Integration in the L2-sense as described in Walsh (1986).
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The integrator L is chosen to be a Lévy basis

➤ Notation: B(R) Borel sets of R; Bb(S) bounded Borel sets of S ∈ B(R).

Definition 1
A family {L(A) : A ∈ Bb(S)} of random variables in R is called an R-valued
Lévy basis on S if the following three properties hold:

1 The law of L(A) is infinitely divisible for all A ∈ Bb(S).

2 If A1, . . . ,An are disjoint subsets in Bb(S), then L(A1), . . . , L(An) are
independent.

3 If A1,A2, . . . are disjoint subsets in Bb(S) with
⋃∞

i=1 Ai ∈ Bb(S), then
L (

⋃∞
i=1 Ai ) = ∑

∞
i=1 L(Ai ) , a.s., where the convergence on the right hand

side is a.s..

➤ Conditions (2)&(3) define an independently scattered random
measure .
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Cumulant function

➤ The a cumulant function of a homogeneous Lévy bases is given by

C (ζ, L(A)) = Log(E(exp(iζL(A))

=

[

iζa −
1
2

ζ2b +
∫

R

(

eiζz − 1 − iζzI[−1,1](z)
)

ν(dz)
]

leb(A),

where leb(·) denotes the Lebesgue measure, and where a ∈ R, b ≥ 0
and ν is a Lévy measure on R.
[The logarithm above should be understood as the distinguished logarithm, see e.g. Sato

(1999).]

➤ The characteristic quadruplet associated with L is given by (a, b, ν, leb).

➤ We call an infinitely divisible random variable L′ with characteristic triplet
given by (a, b, ν) the Lévy seed associated with L.

➤ Note: L((0, t ]) = Lt is a a Lévy process (for a hom. Lévy basis).
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The model

➤ Consider a market with finite time horizon [0,T ∗] for some T ∗ ∈ (0,∞).

➤ Need to account for a delivery period: Model the futures price at time
t ≥ 0 with delivery period [T1,T2] for t ≤ T1 ≤ T2 ≤ T ∗ say.

➤ Model the futures price with delivery period [T1,T2] by

Ft (T1,T2) =
1

T2 − T1

∫ T2

T1

F (t ,T )dT , (1)

where F (t ,T ) is the instantaneous futures price.
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➤ Need to account for a delivery period: Model the futures price at time
t ≥ 0 with delivery period [T1,T2] for t ≤ T1 ≤ T2 ≤ T ∗ say.

➤ Model the futures price with delivery period [T1,T2] by

Ft (T1,T2) =
1

T2 − T1

∫ T2

T1

F (t ,T )dT , (1)

where F (t ,T ) is the instantaneous futures price.

Model definition under risk neutral probability measure

Under the assumptions (A.1) - (A.7):

F (t ,T ) = Λ(T ) +
∫

At

k(T ; ξ, s)σ(ξ, s)L(dξ, ds). (2)

Musiela parametrisation with x = T − t and ft (x) = F (t , x + t):

ft (x) = Λ(t + x) +
∫

At

k(x + t ; ξ, s)σ(ξ, s)L(dξ, ds). (3)
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Model assumptions

A.1 L is a a homogeneous, square-integrable Lévy basis on R
2, which has

zero mean; its characteristic quadruplet is denoted by (a, b, ν, leb).

A.2 The filtration {Ft}t∈[−T ∗
,T ∗] is initially defined by Ft = ∩∞

n=1F
0
t+1/n,

where F0
t = σ{L(A, s) : A ∈ Bb([0,T ∗]),−T ∗ ≤ s ≤ t}, which is

right-continuous by construction and then enlarged using the natural
enlargement.

A.3 The positive random field σ = σ(ξ, s) : Ω × R
2 → (0,∞) denotes the

so-called stochastic volatility field and is assumed to be independent of
the Lévy basis L.

A.4 The function k : [0,T ∗]× [0,T ∗]× [−T ∗
,T ∗] → [0,∞) denotes the

so-called weight function;

A.5 For each T ∈ [0,T ∗], the random field
(k(T ; ξ, s)σ(ξ, s))(ξ,s)∈[0,T ∗]×[−T ∗

,T ∗] is assumed to be predictable and to
satisfy the following integrability condition:

E

[

∫

[−T ∗
,T ∗]×[0,T ∗]

k2(T ; ξ, s)σ2(ξ, s) dξds
]

< ∞. (4)
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Model assumptions cont’d

A.6 We call the set

At = [0,T ∗]× [−T ∗
, t ] = {(ξ, s) : 0 ≤ ξ ≤ T ∗

,−T ∗ ≤ s ≤ t}

⊆ [0,T ∗]× [−T ∗
,T ∗]

(5)

the ambit set.

Time s

Time to delivery ξ

b
T ∗

b

T ∗
b

−T ∗
b

t0
A.7 The deterministic integrable function Λ : [0,T ∗] → (0,∞) denotes a

seasonality and trend function.
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Recap: The model

Let 0 ≤ t ≤ T ≤ T ∗. Under the assumptions (A.1) - (A.7) the futures price
under the risk-neutral probability measure is defined as the ambit field given
by

F (t ,T ) = Λ(T ) +
∫

At

k(T ; ξ, s)σ(ξ, s)L(dξ, ds). (6)

Time s

Time to delivery ξ

b
T ∗

b

T ∗
b

−T ∗
b

t0
Figure: The ambit set At = [0,T ∗]× [−T ∗

, t ].
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Important properties of the model

Proposition 2

For T ∈ [0,T ∗], the stochastic process (F (t ,T ))0≤t≤T is a martingale with
respect to the filtration {Ft}t∈[0,T ].
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Cσ (ζ, ft (x)) := Log (E (exp(iζft (x))| Gt ))
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∫
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Cσ (ζ, ft (x)) := Log (E (exp(iζft (x))| Gt ))

= iζΛ(t + x) +
∫

At

C
(

ζk (x + t ; ξ, s) σ (ξ, s) , L′
)

dξds,

where L′ is the Lévy seed associated with L.

Example 4

If L is a homogeneous Gaussian Lévy basis, then we have

C
(

ζk (x + t ; ξ, s) σ (ξ, s) , L′
)

= iζΛ(t + x)−
1
2

ζ2k2 (x + t ; ξ, s) σ2 (ξ, s) .
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Correlation structure

➤ Note that our new model does not only model one particular futures
contract, but it models the entire futures curve at once.

➤ Let 0 ≤ t ≤ t + h ≤ T ∗ and 0 ≤ x , x ′ ≤ T ∗, then

Cor (ft (x), ft+h(x
′))

= K−1
∫

At

k(x + t , ξ, s)k(x ′ + t + h, ξ, s)E
(

σ2(ξ, s)
)

dξds,

where

K =

√

∫

At

k2(x + t , ξ, s)E (σ2(ξ, s))dξds

·

√

∫

At

k2(x ′ + t + h, ξ, s)E (σ2(ξ, s))dξds
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Examples of weight functions

➤ Consider weight functions which factorise as

k(x + t ; ξ, s) = Φ(ξ)Ψ(x + t , s), (7)

for suitable functions Ψ and Φ. [In the case that Φ ≡ 1 and there is no
stochastic volatility we essentially get be back the classical framework.]

➤ OU-type weight function: Ψ(x + t , s) = exp(−α(x + t − s)), for some
α > 0.

➤ CARMA-type weight function: Ψ(x + t − s) = b ′ exp(A(x + t − s))ep;

➤ Bjerksund et al. (2010)-type weight function: Ψ(x + t , s) = a
x+t−s+b , for

a, b > 0

➤ Audet et al. (2004)-type weight function:

➠ Ψ(x + t , s) = exp(−α(x + t − s)) for α > 0,

➠ Φ(ξ) = exp(−βξ), for β > 0
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Example: Gaussian ambit fields
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(a) Exponential weight function
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(b) Sum of two exponential weight
functions

t

x −2

−1

0

1

2

(c) Bjerksund et al.-type weight func-
tion
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(d) Gamma-type weight function
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Implied spot price

➤ By the no-arbitrage assumption, the futures price for a contract which
matures in zero time, x = 0, has to be equal to the spot price, that is,
ft (0) = St . Thus,

St = Λ(t) +
∫

At

k(t ; ξ, s)σ(ξ, s)L(dξ, ds).
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Implied spot price

➤ By the no-arbitrage assumption, the futures price for a contract which
matures in zero time, x = 0, has to be equal to the spot price, that is,
ft (0) = St . Thus,

St = Λ(t) +
∫

At

k(t ; ξ, s)σ(ξ, s)L(dξ, ds).

➤ In the Gaussian case, we get the following result:

St
law
= Λ(t) +

∫ t

−T ∗
Ψ(t ; s)ωsdWs,

assuming that k(x + t ; ξ, s) = Φ(ξ)Ψ(x + t , s),

ω2
s =

∫ T ∗

0 Φ2(ξ)σ2(ξ, s)dξ and where W is a Brownian motion.

➤ Null-spatial case of ambit field: Volatility modulated Volterra process,
Lévy semistationary process. (Fit energy spot prices very well!)
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Simulated futures curve
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(e) Ambit field without stochastic volatility
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(f) Stochastic volatility field
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(g) Ambit field with stochastic volatility
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Simulated futures curve cont’d
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(i) Futures price without stochastic volatility
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(j) Futures price with stochastic volatility
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Samuelson effect

➤ Samuelson effect: The volatility of the futures price increases when the
time to delivery approaches zero.

➤ Also, the volatility of the futures converges to the volatility of the spot
price.

➤ The weight function k plays the role of a damping function and is
therefore non-increasing in the first variable and ensures that the
Samuelson effect can be accounted for in our model.

Proposition 5

Under suitable conditions (given in our paper) the variance of the futures price
ft (x), given by

υt (x) := Var (ft (x)) = c
∫

At

k2(x + t ; ξ, s)E
(

σ2(ξ, s)
)

dξds,

is monotonically non-decreasing as x ↓ 0. Further, the variance of the futures
converges to the variance of the implied spot price.
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Samuelson effect: Example for different choices of the
weight function

Example 6

Suppose the weight function factorises as mentioned before and there is no
stochastic volatility. Then the variance of the futures price is given by

υt (x) = c ′
∫ t

−T ∗
Ψ2(x + t , s)ds, where c ′ = c

∫ T ∗

0
Φ2(ξ)dξ.

This implies that in the context an exponential weight, we get

vt (x) = c ′ 1
2α

(

e−2αx − e−2α(x+t+T ∗)
)

,

and in the context of the Bjerksund et al. (2010) model we have

vt (x) = c ′a2
(

1
x + b

−
1

x + t + T ∗ + b

)

.
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Change of measure

➤ Next we do a change of measure from the risk-neutral pricing measure to
the physical measure.

Proposition 7

Define the process

Mθ
t = exp

(

∫

At

θ(ξ, s) L(dξ, ds)−
∫

At

C(−iθ(ξ, s), L′) dξ ds
)

. (8)

The deterministic function θ : [0,T ∗]× [−T ∗
,T ∗] 7→ R is supposed to be

integrable with respect to the Lévy basis L in the sense of Walsh (1976).
Assume that

E

(

exp
(

∫

At

C(−iθ(s, ξ), L′) dξ ds
))

< ∞, for all t ∈ RT ∗ . (9)

Then Mθ
t is a martingale with respect to Ft with E[Mθ

0 ] = 1.
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Change of measure cont’d

➤ Define an equivalent probability P by

dP
dQ

∣

∣

∣

Ft

= Mθ
t , (10)

for t ≥ 0, where the function θ is an additional parameter to be modelled
and estimated, which plays the role as the market price of risk

➤ We compute the characteristic exponent of an integral of L under P.

Proposition 8

For any v ∈ R, and Walsh-integrable function g with respect to L, it holds that

LogEP

[

exp
(

iv
∫

At

g(ξ, s)L(dξ, ds)
)]

=
∫

At

(

C(vg(ξ, s)− iθ(ξ, s), L′)− C(−iθ(ξ, s), L′)
)

dξ ds .
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Summary of key results

➤ Use ambit fields to model electricity futures.

➤ Our model ensures that the futures price is a martingale under the
risk-neutral measure.

➤ Studied relevant examples of model specifications.

➤ New modelling framework accounts for the key stylised facts observed in
electricity futures.

➤ Futures and spot prices can be linked to each other within the ambit field
framework (Samuelson effect).

➤ Change of measure.

Further results not mentioned today:
➤ Geometric modelling framework

➤ Option pricing based on Fourier techniques.

➤ Simulation methods for ambit fields.
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Outlook

➤ Detailed empirical studies.

➤ Inference methods for ambit fields.

➤ Need for more efficient simulation schemes.
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