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Background

I Commodity contracts exhibit certain empirical regularities: mean-reversion and

convenience yield in spot prices, backwardation, contango and decreasing

volatility term structure (Samuelson Effect) in futures prices

I There is a significant body of literature on commodity price modeling that

attempts to capture these empirical observations

I Modeling efforts are broadly categorized into two groups:

1. Reduced-form models that characterize the spot price as the solution to an

SDE: Schwartz 1997, Schwartz & Smith 2000, Hilliard & Reis 1998

2. Structural models that explicitly capture the supply - demand intraction,

market mode (monopoly, oligopoly or competitive) and other economic

dynamics: Sundaresan 1984, Reinganum & Stokey 1985, Dockner et al.

2001, Sircar et al. 2009
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Research Motivation
While reduced-form and structural models are somehow connected (economic intuition

underlying both types of models is similar), there does not appear to be an attempt to

formally unite them.

The research motivation for this work is this absence of investigation into the precise

relationship between reduced form and structural models of commodity prices.



Literature Review (1/2)
Schwartz 1997 reviews multi-factor commodity spot price models:

I One-factor exponential Ornstein-Uhlenbeck mean-reverting model for the

commodity spot price:

dSt = κ (µ− ln (St))Stdt + σStdZt

I Two-factor model w/ stochastic convenience yield:

dSt = (µ− δt) Stdt + σ1StdZ
1
t

dδt = κ (α− δt) dt + σ2dZ
2
t

where dZ1
t dZ

2
t = ρdt.

I Three-factor model w/ stochastic convenience yield and interest rates:

dSt = (rt − δt)Stdt + σ1dZ
1
t

dδt = κ (α̂− δt) dt + σ2dZ
2
t

drt = α (m∗ − r) dt + σ3dZ
3
t

where dZ1
t dZ

2
t = ρ1dt, dZ2

t dZ
3
t = ρ2dt and dZ1

t dZ
3
t = ρ3dt.
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Literature Review (2/2)

I Schwartz & Smith 2000 proposes a two factor model w/o a stochastic

convenience yield term:

St = exp (χt + γt)

dχt = −κχtdt + σχdZ
χ
t

dγt = µγdt + σγdZ
γ
t

where dZχt dZγt = ρχγdt.

This model is shown to be equivalent to the two-factor model proposed in

Schwartz 1997 under linear transformations of the parameters.

I Hilliard & Reis 1998 extends Schwartz 1997 three-factor model to include

jump-diffusion in the commodity spot price in addition to stochastic convenience

yield and interest rates.

dSt

St
= (µ− δt) dt + σSdW

S
t + κdqt

where log (1 + κ) ∼ N
(

log (1 + E [κ])− ω2

2
, ω2
)

and (qt)t≥0 is a Poisson

counter with intensity λ.
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Contribution to Literature
This work makes two major contributions to literature:

1. Help establish a connection between reduced-form and structural models by

endogenously deriving generalized forms of the Schwartz 1997 one-factor and

Schwartz & Smith 2000 two-factor models from a simple stochastic dynamic

Cournot resource extraction model.

2. Generalize the Cournot model to an arbitrary number of players, N, allowing to

derive monopoly, oligopoly and competitive market modes.
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Model Assumptions
Key assumptions underlying the simple model include:

I Single common-property resource stock

I Costless extraction of resource

I No storage

I Intertemporally additive discounted utility

I Discounted log() utility maximizing behavior by players

I Existence of an inverse demand function (also called the market price function)

that maps total quantity extracted by all players to a price

I Homogenous resource and hence no product differentiation
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Model Definitions (1/2)
Model definitions:

I There are N players

I Let Xt be the resource stock and εt be the demand shock at time t

I Let qit be the resource extracted by player i at time t, then a strategy Ui for

player i defined as Ui : (Xt , εt) 7→ qit where qit ≤ Xt ∀t ∈ [0,∞) is a Markov

strategy as it only depends on the current value of the state vector and let Ui be

the set of such Markov strategies for player i

I Resource stock is not perfectly measurable, i.e. there is continuous uncertainty

regarding the actual stock level, and there are randomly occurring randomly

sized jumps in the resource supply, characterizing the evolution of the resource

stock as:

dXt =

(
−

N∑
i=1

Ui (Xt , εt)

)
dt + σXXtdWt +

(
eθt − 1

)
XtdNt

where (Nt)t≥0 is a Poisson process with rate γ that is independent of (Wt)t≥0.

Letting T1,T2, . . . be the arrival times of the Poisson process, the sequence of

θT1
, θT2

, . . . is i.i.d. and θTi
∼ N (µθ, σθ) ∀i
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Model Definitions (2/2)

I As long term demand for the resource is linked to stable consumption levels,

demand shocks are temporary in nature and should be mean-reverting,

characterizing the demand shock process (εt)t≥0 as a mean-zero OU process:

dεt = −αεtdt + σεdZt

where dWtdZt = ρdt

I The market price function is given by p
(
q1
t , . . . , q

N
t

)
=
(∑N

i=1 q
i
t

)−1
with

∂p/∂qit < 0

I The profit function is given by π
(
qit , p

)
= pqit with ∂π/∂qit > 0
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Problem Formulation
I Player i ’s value function J it at time t is defined as:

J it (x , ε) = E

[∫ ∞
t

e−rs log

(
Ui (Xs , εs) exp (εs)∑N

j=1 Uj (Xs , εs)

)
ds | Xt = x , εt = ε

]

s.t. dXt =

(
−

N∑
i=1

Ui (Xt , εt)

)
dt + σXXtdWt +

(
eθt − 1

)
XtdNt

dεt = −αεtdt + σεdZt , dWtdZt = ρdt

Since (Wt)t≥0 and (Zt)t≥0 are correlated, we can define a new Brownian motion(
W̃t

)
t≥0

that is independent of both (Wt)t≥0 and (Zt)t≥0 and represent

dZt = ρdWt +
(
1− ρ2

)1/2
dW̃t .

I The objective of player i is to find optimal strategy U∗i such that:

J it
(
x , ε|U∗i ,U

∗
−i

)
≥ J it

(
x , ε|Ui ,U

∗
−i

)
∀Ui ∈ Ui and ∀t

where U−i = (U1, . . . ,Ui−1,Ui+1, . . . ,UN).

We define V i
t (x , ε) := J it

(
x , ε|U∗i ,U

∗
−i

)
as the optimal value function for player

i .



Solution Overview
We take the stochastic dynamic programming approach and write the HJB equation

for player i ’s optimal value function V i
t (x , ε) at time t:

sup
Ui∈Ui

[
G ∗ V i

t (x , ε)− rV i
t (x , ε) + log

(
Ui (x , ε) exp (ε)

Ui (x , ε) +
∑N

j=1,j 6=i U
∗
j (x , ε)

)]
= 0

where G is the infinitesimal generator.

For brevity, drop the function parameters x , ε, then G ∗ V i
t is given by PIDE:

G ∗ V i
t =

−Ui −
N∑

j=1,j 6=i

U∗j

 ∂V i
t

∂x
− αε

∂V i
t

∂ε
+

1

2

∂2V i
t

∂x2
σ2
X x

2

+
1

2

∂2V i
t

∂ε2
σ2
ε +

∂2V i
t

∂x∂ε
σXσερx + γE

[
V i
t

+ − V i
t

]
where V i

t
+

= Vt
(
xeθ, ε | θt = θ

)
accounting for the jump.

We proceed with the solution by fixing and differentiating the HJB equation w.r.t. Ui

and then looking for a symmetric solution of the type U∗i = U∗j ∀i , j ∈ [1, . . . ,N].



Symmetric Nash Equilibrium Solution

I The optimal value function of player i is:

V i
t (x , ε) =

1

r

(
1

2
− N

)
−
σ2
X

4r2
+ γ

µθ

2r2
+

1

2r
log
(
x

r

N2
(2N − 1)

)
+

ε

α+ r

I The Markov optimal extraction strategy is:

U∗i (x , ε) = rx
2N − 1

N

which is independent of the demand uncertainty ε.

I The law of motion of the resource stock under optimal extraction behavior by

players is:

dXt = −r (2N − 1)Xtdt + σXXtdWt +
(
eθt − 1

)
XtdNt

I The law of motion of the spot price of the resource is:

dpt

pt
=

(
−αεt +

1

2
r (2N − 1) +

1

2
σ2
ε −

1

2
σεσXρ+

3

8
σ2
X

)
dt(

σερ−
1

2
σX

)
dWt + σε

(
1− ρ2

)1/2
dW̃t +

(
e−

1
2
θt − 1

)
dNt

where
(
W̃t

)
t≥0

and (Wt)t≥0 are independent Brownian motions.



Symmetric Nash Equilibrium Solution
I The optimal value function of player i is:

V i
t (x , ε) =

1

r

(
1

2
− N

)
−
σ2
X

4r2
+ γ

µθ

2r2
+

1

2r
log
(
x

r

N2
(2N − 1)

)
+

ε

α+ r

I The Markov optimal extraction strategy is:

U∗i (x , ε) = rx
2N − 1

N

which is independent of the demand uncertainty ε.

I The law of motion of the resource stock under optimal extraction behavior by

players is:

dXt = −r (2N − 1)Xtdt + σXXtdWt +
(
eθt − 1

)
XtdNt

I The law of motion of the spot price of the resource is:

dpt

pt
=

(
−αεt +

1

2
r (2N − 1) +

1

2
σ2
ε −

1

2
σεσXρ+

3

8
σ2
X

)
dt(

σερ−
1

2
σX

)
dWt + σε

(
1− ρ2

)1/2
dW̃t +

(
e−

1
2
θt − 1

)
dNt

where
(
W̃t

)
t≥0

and (Wt)t≥0 are independent Brownian motions.



Symmetric Nash Equilibrium Solution
I The optimal value function of player i is:

V i
t (x , ε) =

1

r

(
1

2
− N

)
−
σ2
X

4r2
+ γ

µθ

2r2
+

1

2r
log
(
x

r

N2
(2N − 1)

)
+

ε

α+ r

I The Markov optimal extraction strategy is:

U∗i (x , ε) = rx
2N − 1

N

which is independent of the demand uncertainty ε.

I The law of motion of the resource stock under optimal extraction behavior by

players is:

dXt = −r (2N − 1)Xtdt + σXXtdWt +
(
eθt − 1

)
XtdNt

I The law of motion of the spot price of the resource is:

dpt

pt
=

(
−αεt +

1

2
r (2N − 1) +

1

2
σ2
ε −

1

2
σεσXρ+

3

8
σ2
X

)
dt(

σερ−
1

2
σX

)
dWt + σε

(
1− ρ2

)1/2
dW̃t +

(
e−

1
2
θt − 1

)
dNt

where
(
W̃t

)
t≥0

and (Wt)t≥0 are independent Brownian motions.



Symmetric Nash Equilibrium Solution
I The optimal value function of player i is:

V i
t (x , ε) =

1

r

(
1

2
− N

)
−
σ2
X

4r2
+ γ

µθ

2r2
+

1

2r
log
(
x

r

N2
(2N − 1)

)
+

ε

α+ r

I The Markov optimal extraction strategy is:

U∗i (x , ε) = rx
2N − 1

N

which is independent of the demand uncertainty ε.

I The law of motion of the resource stock under optimal extraction behavior by

players is:

dXt = −r (2N − 1)Xtdt + σXXtdWt +
(
eθt − 1

)
XtdNt

I The law of motion of the spot price of the resource is:

dpt

pt
=

(
−αεt +

1

2
r (2N − 1) +

1

2
σ2
ε −

1

2
σεσXρ+

3

8
σ2
X

)
dt(

σερ−
1

2
σX

)
dWt + σε

(
1− ρ2

)1/2
dW̃t +

(
e−

1
2
θt − 1

)
dNt

where
(
W̃t

)
t≥0

and (Wt)t≥0 are independent Brownian motions.



Symmetric Nash Equilibrium Solution
I The optimal value function of player i is:

V i
t (x , ε) =

1

r

(
1

2
− N

)
−
σ2
X

4r2
+ γ

µθ

2r2
+

1

2r
log
(
x

r

N2
(2N − 1)

)
+

ε

α+ r

I The Markov optimal extraction strategy is:

U∗i (x , ε) = rx
2N − 1

N

which is independent of the demand uncertainty ε.

I The law of motion of the resource stock under optimal extraction behavior by

players is:

dXt = −r (2N − 1)Xtdt + σXXtdWt +
(
eθt − 1

)
XtdNt

I The law of motion of the spot price of the resource is:

dpt

pt
=

(
−αεt +

1

2
r (2N − 1) +

1

2
σ2
ε −

1

2
σεσXρ+

3

8
σ2
X

)
dt(

σερ−
1

2
σX

)
dWt + σε

(
1− ρ2

)1/2
dW̃t +

(
e−

1
2
θt − 1

)
dNt

where
(
W̃t

)
t≥0

and (Wt)t≥0 are independent Brownian motions.



Key Results (1/2)
Derivation of generalized Schwartz 1997 one-factor model

If you assume in the Dynamic Cournot model that there is no supply-side uncertainty

and the only uncertainty is that of demand uncertainty, then we pick the parameters

σX = 0, θt = 0 ∀t and ρ = 0. Then, based on the solutions on the prior page,

Xt = x0 exp (−rt (2N − 1)) , with X0 = x0

pt = (rx0 (2N − 1))−1/2 exp

(
rt

(
N −

1

2

)
+ εt

)
dpt

pt
=

(
−αεt +

1

2
r (2N − 1) +

1

2
σ2
ε

)
dt + σεdW̃t

Rewriting εt in terms of pt and then plugging into expression for dpt/pt

Dynamic Cournot model : dpt = α (µ (t)− log (pt)) ptdt + σεptdW̃t

Schwartz one-factor model : dSt = κ (µ− log (St)) Stdt + σStdZt

where µ (t) = r
(
N − 1

2

) (
1
α

+ t
)

+
σ2
ε

2α
− 1

2
log (rx0 (2N − 1)).



Key Results (2/2)
Derivation of generalized Schwartz & Smith 2000 two-factor model

Taking a detour and looking at the Schwartz & Smith 2000 model,

St = exp (χt + γt)

dχt = −κχtdt + σχdZ
χ
t

dγt = µγdt + σγdZ
γ
t , dZχt dZγt = ρdt

Comparing law of motion of St to pt from the dynamic Cournot model,

dSt

St
= dχt + dγt +

1

2
(dχt)

2 + dχtdγt +
1

2
(dγt)

2

dpt

pt
=

[
−αεtdt + σε

(
ρdWt +

(
1− ρ2

)1/2
dW̃t

)]
︸ ︷︷ ︸

dχt=−κχtdt+σχdZ
χ
t

+

[
1

2
σ2
εdt

]
︸ ︷︷ ︸

1
2

(dχt )2

+

[(
1

2
µX +

1

4
σ2
X

)
dt −

1

2
σXdWt

]
︸ ︷︷ ︸

dγt=µγdt+σγdZ
γ
t

+

[
1

8
σ2
Xdt

]
︸ ︷︷ ︸

1
2

(dγt )2

+

[
−

1

2
σXσερdt

]
︸ ︷︷ ︸

dχtdγt

+
[(

e−
1
2
θt − 1

)
dNt

]
︸ ︷︷ ︸

additional jump term



Limitations of Model and Further Research

Limitations

I The most obvious limitation of the model is that it considers a single

common-property resource stock that is accessible by all players

I The model does not consider any extraction costs

I The model does not consider any storage

I The model does not explicitly consider storage

I The log() utility allows for easy decoupling of optimization terms and analytical

tractability

Further Research

I Allowing for semi-private resource stocks

I Extending the model for geographically dispersed resource stocks and increasing

cost of extraction for farther sources

I R&D effects and technological improvement

I Fitting and empirical analysis of the structural model
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