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Price impact models

Price impact model

I n brokers trade in the same asset and maximize wealth.

I Brokers face identical limit order books.

I Broker i controls his rate of trade αi
t .

I The asset price is a martingale plus a drift given by price impact.
(Almgren-Chriss ’01, Carlin et al ’09)
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Price impact models

Price impact model - dynamics

I Transaction costs c : R→ [0,∞] (convex, c(0) = 0)

I Broker i ’s cash and volume:

dK i
t = −(αi

tSt + c(αi
t))dt

dX i
t = αi

tdt + σdW i
t

I Asset price:

dSt =
γ

n

n∑
j=1

c ′(αj
t)dt + σ0dBt

I Broker i ’s wealth is V i
t = V i

0 + X i
t St + K i

t , or

dV i
t =

γ
n

n∑
j=1

c ′(αj
t)X i

t − c(αi
t)

 dt + σStdW i
t + σ0X i

t dBt
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Price impact models

Price impact model - optimization

Broker i maximizes expected wealth E[V i
T ]:

sup
αi

E
∫ T

0

γ
n

n∑
j=1

c ′(αj
t)X i

t − c(αi
t)

 dt,

s.t. dX i
t = αi

tdt + σdW i
t

Are there Nash equilibria?
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Price impact models

Price impact model - general objectives

Additional objective functions G and F allow for time-T liquidation
demands, tracking requirements, etc.

sup
αi

E

G (X i
T ) +

∫ T

0

γ
n

n∑
j=1

c ′(αj
t)X i

t − c(αi
t)− F (t,X i

t )

 dt

 ,
s.t. dX i

t = αi
tdt + σdW i

t

The optimization problems are coupled through the empirical distribution
of the controls. Limit n→∞?
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General mean field games

Mean field stochastic differential games (MFG)

Player i ’s state process and objective:

sup
αi

E

[∫ T

0

f (t,X i
t , µ

n
t , ν

n
t , α

i
t)dt + g(X i

T , µ
n
T )

]
,

s.t. dX i
t = b

(
t,X i

t , µ
n
t , α

i
t

)
dt + σ(t,X i

t )dW i
t ,

µn
t :=

1

n

n∑
j=1

δX j
t
, νnt :=

1

n

n∑
j=1

δαj
t

We study the mean field limit, as proposed (with no νnt dependence) by
Lasry & Lions and independently by Caines, Huang, & Malhamé in ’06.
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General mean field games

Limit n→∞

1. Fix measure flows t 7→ (µt , νt)

2. Solve a standard optimal control problem

sup
α

E

[∫ T

0

f (t,Xt , µt , νt , αt)dt + g(XT , µT )

]
, s.t.

dXt = b (t,Xt , µt , αt) dt + σ(t,Xt)dWt ,

3. Let µ′t denote the law of the optimally controlled state process at
time t and ν′t the law of the optimal control at time t.

4. Find a fixed point (µ′t , ν
′
t) = (µt , νt).
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General mean field games

Existence and uniqueness theory

Any approach to stochastic optimal control may be applied in step 2.

1. PDEs - Lasry & Lions, Caines et al.

2. Stochastic maximum principle - Carmona & Delarue, Bensoussan et
al.

3. Weak formulation
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General mean field games

Assumptions

I compact convex control space A

I admissible controls A = progressively measurable A-valued processes

I b, f , g jointly measurable and continuous in (µ, ν, a), at points
where µ ∼ Lebesgue

I σ is measurable and bounded away from zero, and there exists a
unique strong solution to dXt = σ(t,Xt)dWt

I b, σ bounded

I some growth assumptions for f and g
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General mean field games

Setup

On (Ω,F ,P), solve dXt = σ(t,Xt)dWt . For (µ, α) fixed,

dPµ,α

dP
:= exp

[∫ T

0

σ−1b(t,Xt , µt , αt)dWt −
1

2

∫ T

0

|σ−1b(t,Xt , µt , αt)|2dt

]

Under Pµ,α, X is a weak solution of the state equation,

dXt = b(t,Xt , µt , αt)dt + σ(t,Xt)dW µ,α
t

Let Φ(µ, α)t = (Pµ,α ◦ X−1
t ,Pµ,α ◦ α−1

t ).
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General mean field games

Setup
For (µ, ν) fixed, define the value function

V µ,ν
t := ess sup

α∈A
EPµ,α

[∫ T

t

f (t,Xt , µt , νt , αt)dt + g(XT , µT )

∣∣∣∣∣Ft

]
Hamiltonian and maximized Hamiltonian:

h(t, x , µ, ν, z , a) := f (t, x , µ, ν, a) + z · σ−1b(t, x , µ, a),

H(t, x , µ, ν, z) := sup
a∈A

h(t, x , µ, ν, z , a)

Can show V µ,ν
t solves the BSDE{

dV µ,ν
t = −H(t,Xt , µt , νt ,Z

µ,ν
t )dt + Zµ,ν

t dWt ,

V µ,ν
T = g(XT , µT )

By comparison principle, the set of optimal controls is exactly

A(µ, ν) := {α ∈ A : αt ∈ A(t,Xt , µt , νt ,Z
µ,ν
t ) dt × dP − a.e.}

A(t, x , µ, ν, z) := arg max
a∈A

h(t, x , µ, ν, z , a)
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General mean field games

Existence and uniqueness

A MFG solution is a fixed point

(µ, ν) ∈ Φ(µ,A(µ, ν)) = {Φ(µ, α) : α ∈ A(µ, ν)}

Theorem

I Assume the Hamiltonian h is concave in a and
f = f1(t, x , µ, a) + f2(t, x , µ, ν). Then there exists a fixed point.

I Assume the Hamiltonian h is strictly concave in a,
f = f1(t, µ, ν) + f2(t, x , a), g = g(x), and b = b(t, x , a). Then the
fixed point is unique.

Proof.
1. Kakutani’s fixed point theorem. 2. Translate Lasry & Lions’ proof into
probabilistic language.
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General mean field games

Approximate equilibria for the finite-player game

Theorem
If α = α(t,X·) is an optimal feedback control for the MFG problem, then
the strategy profiles α(t,X i

· ) form an approximate Nash equilbrium for
the finite-player game - for some εn ↓ 0, for each n, no player in the
n-player game can increase his expected reward by more than εn by
unilaterally changing strategy.
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Examples

Price impact model, revisited

Price impact model corresponds to:

I b(t, x , µ, α) = α

I σ constant

I g(x , µ) = G (x)

I f (t, x , µ, ν, α) = γx
∫

c ′dν − c(α)− F (t, x).

Theorem
For a bounded order book, with c ′ continuous, the mean field price
impact model has a solution. Moreover, the errors εn are O(1/

√
n).
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Examples

Other types of interactions

I Rank
I f (t, x , µ, ν, a) contains a term F (µ(−∞, x ])
I Guéant, Lasry, Lions - oil production model

I Quantile
I In dimension 1, f (t, x , µ, ν, a) involves quantile function

F−1
µ (·) = inf{y ∈ R; µ(−∞, y ] ≥ ·}

I Analogous “nearest-neighbor” functions in multiple dimensions are
useful for flocking models

I Sub-populations or Types
I f (t, x , µ, ν, a) = f̂ (t, x ,F1(µ), . . . ,Fm(µ), ν, a), where

Fi (µ)(B) := 1{µ(Bi )>0}µ(B ∩ Bi )/µ(Bi ) and Bi ⊂ Rd have positive
Lebesgue measure

I e.g. income brackets
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