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The problem

Oell + U — 30x1? + Ny (X, Uy Uy, Uy Ugex) =0, x €T

Quasi-linear Hamiltonian perturbation

_/\/4 = —8X{(8uf)(x, u, Ux)} + axx{(auxf)(xa u, UX)}

N4 - a0(X7 u, Uy, Uxx) + al(X7 u, Uy, UXX)UXXX

Na(x, €U, ey, Elx, El) = O(e*), € — 0

f(x, u, ux) = O(|ul]® + |ux[®), f € CY(T x R x R, R)

Physically important for perturbative derivation from water-waves
(that | learned from Walter Craig)



The problem

Hamiltonian PDE

up = Xp(u), Xu(u):= 0V 2H(u)

Hamiltonian KdV

2
H:/&+u3+f(x,u,ux)dx
Jt 2

where the density f(x, u, ux) = O(|(u, ux)|?)

HA(T) = {u(x) € HY(T,R) : [pu(x)dx =0}

Non-degenerate symplectic form:

Qu,v) = [p(05u) vdx

4




The problem

Goal: look for small amplitude quasi-periodic solutions

Definition: quasi-periodic solution with n frequencies

u(t,x) = U(wt, x) where U(p,x) : T" x T — R,
w € R"(= frequency vector) is irrational w - k #0, Yk € Z" \ {0}
= the linear flow {wt}¢cr is DENSE on T”

The torus-manifold
T" 5 ¢ — u(p, x) € phase space

is invariant under the flow evolution of the PDE



The problem

Linear Airy eq.

Us + Uy = 0, xeT

Solutions: (superposition principle)

u(t,x)= Y ajeij3teijx

JEZ\{0}

Eigenvalues j3 = "NORMAL FREQUENCIES"
Eigenfunctions: e¥* = "NORMAL MODES"

All solutions are 27~ periodic in time: COMPLETELY RESONANT )
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Linear Airy eq.
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All solutions are 27~ periodic in time: COMPLETELY RESONANT )

= Quasi-periodic solutions are a completely nonlinear phenomenon



The problem

KdV is COMPLETELY INTEGRABLE

Up + U — 30502 =0

All solutions are periodic, quasi-periodic, almost periodic J

What happens under a small perturbation?



The problem
KAM theory

Kuksin '98, Kappeler-Poschel '03: KAM for KdV

Ut + Usxx + Uty + €0xf(x,u) =0 J

@ SEMILINEAR PERTURBATION Oxf(x, u)

@ Also true for Hamiltonian perturbations
U + Uxxx + Ulyx + 50X|6X‘1/2f(xv ‘0X|1/2u) =0
of order 2

3 — % > i? +j%, i # j = KdV gains up to 2 spatial derivatives J




The problem
KAM theory

Kuksin '98, Kappeler-Poschel '03: KAM for KdV

Ut + Usxx + Uty + €0xf(x,u) =0 J

@ SEMILINEAR PERTURBATION Oxf(x, u)

@ Also true for Hamiltonian perturbations
U + Uxxx + Ulyx + 50X|6X‘1/2f(xv ‘0X|1/2u) =0
of order 2

3 — % > i? +j%, i # j = KdV gains up to 2 spatial derivatives J

© for QUASI-LINEAR KdV? OPEN PROBLEM



Literature

Literature: KAM for "unbounded" perturbations

Liu-Yuan '10 for Hamiltonian DNLS (and Benjamin-Ono)
iUy — U + Mpu +ief(u,0)uy =0

Zhang-Gao-Yuan '11 Reversible DNLS

iU + U = |ux|?u

Craig-Wayne periodic solutions, Lyapunov-Schmidt + Nash-Moser

Bourgain '96, Derivative NLW

Ytt_YXx+my+y1f2207 m7é01

Craig '00, Hamiltonian DNLW

Vet — Ysx + 8(X)y = f(x,DPy), D:= /-0« + g(x),




quasi-periodic solutions

Berti-Biasco-Procesi '12, '13, reversible DNLW

Ut — Unx + mu = g(x, u, uy, ut)




quasi-periodic solutions

Berti-Biasco-Procesi '12, '13, reversible DNLW

Ut — Unx + mu = g(x, u, uy, ut)

For quasi-linear PDEs: Periodic solutions:
@ looss-Plotinikov-Toland, looss-Plotnikov, '01-'10,
Water waves: quasi-linear equation,
new ideas for conjugation of linearized operator



Main results
Main results

Hamiltonian density:

f(x,u,uy) = fs(u, uy) + f>e(x, u, uy)

fs polynomial of order 5 in (u, ux); f>6(x, u, ux) = O(|u] + |ux|)®

Reversibility condition:

f(x,u,uy) = f(—x,u,—uy)

KdV-vector field Xy(u) := 0xVH(u) is reversible w.r.t the
involution

ou:=u(—x), 0> =1, —oXy(u)= Xy(ou) J




Main results

Theorem ('13, P. Baldi, M. Berti, R. Montalto)

Let f € C9 (with q := q(n) large enough). Then, for “generic”
choice of the "TANGENTIAL SITES"

S::{_.7n:--~7_.717.71:~--7.7n} CZ\{O}

the hamiltonian and reversible KdV equation
OtU + Uxx — 30x U2+N4(X7 u, UX7UXX7UXXX) =0, xeT,

possesses small amplitude quasi-periodic solutions with Sobolev
regularity H®, s < g, of the form

u=30 /5T O 1 o(VE), w(€) =+ O(l€])

for a "Cantor-like" set of "initial conditions" £ € R" with density 1
at £ = 0. The linearized equations at these quasi-periodic solutions
are reduced to constant coefficients and are stable.

If f = f57 = O(|(u, ux)|”) then any choice of tangential sites




Main results

Tangential sites

Explicit conditions:
e HYPOTHESIS (83) j1 +j2 +j3 # 0 for all j1,j2,j3 € S
o HYPOTHESIS (S4) Pj1,...,Ja € S such that

it tiatia#0, F+i+ia+ii—(iti+tia+i)?=0

@ (S3) used in the linearized operator. If f5 = 0 then not needed

@ If also fg = 0 then (S4) not needed (used in
Birkhoff-normal-form)

“genericity”:

After fixing {71,...,7n}, in the choice of 7,11 € N there are only
FINITELY MANY forbidden values




Main results

Comments

@ A similar result holds for

mKdV: focusing/defocusing

8tu+uxxxiaxu3+N4(X7 u, uXv”XX)”XXX) =0, xeT

for all the tangential sites S :={—7n, ..., =71, 71+ -+, Jn}

such that
2

n
=2
on—1 Z]i ¢ N
i=1
@ If f = f(u, ux) the result is true for all the tangential sites S

© Also for generalized KdV (not integrable), with normal form
techniques of Procesi-Procesi




Main results
Linear stability

(L): linearized equation 0:h = 0,0,V H(u(wt, x))h

hy + az(wt, X) hyx + az(wt, x) hux + a1(wt, x)hy + ag(wt,x)h =0

There exists a quasi-periodic (Floquet) change of variable
h=owt)(¢,n,v), YeT’  neR”, veHNLE

which transforms (L) into the constant coefficients system

W = b
=0
vi =ipjvi, j¢S, i eR

= n(t) =m0, vj(t) = vj(0)e"* = |[v(t)]ls = [|[v(0)]|s : stability



Main results

Forced quasi-linear perturbations of Airy

Use w = A&J € R" as 1-dim. parameter

Theorem (Baldi, Berti, Montalto , to appear Math. Annalen)

There exist s := s(n) >0, q :== q(n) € N, such that:

Let & € R" diophantine. For every quasi-linear Hamiltonian
nonlinearity f € C9 for all € € (0,e0) small enough, there is a
Cantor set C. C [1/2,3/2] of asymptotically full measure, i.e.

ICcl =1 as e —0,
such that for all A € C. the perturbed Airy equation
Ot + Oxux U + 6f(A(Ijt,X./ U, Uy, Uxx, UXXX) =0

has a quasi-periodic solution u(e, \) € H* (for some s < q) with
frequency w = A\ and satisfying ||u(e, A)||s — 0 as e — 0.




Proof: forced case

. spectral analysis of quasi-periodic operator

L = w-0p+0xx+az(p, x) O+ a2(p, X)0xx + a1 (¢, X)0x + a0 (¢, x)J

ai=0(),i=0,1,2,3
Main problem: the non constant coefficients term as(, x) 0!

MAIN DIFFICULTIES:

@ The usual KAM iterative scheme is unbounded

@ We expect an estimate of perturbed eigenvalues

ni(e) = 7° + O(cs%)

which is NOT sufficient for verifying second order Melnikov

W® -

w4 pi(e) = pile)l = o

Ve, j,i J




Proof: forced case

|dea to conjugate L to a diagonal operator

© "REDUCTION IN DECREASING SYMBOLS"

L= LD =w- 8¥, + m30xx + MOy + Ro J

o Ro(p, x) pseudo-differential operator of order 0,
Ro(¢, x) : HS — HE, variable coefficients, Ry = O(¢),
o m3 =1+ O(g), m = O(¢), m, m3 € R, CONSTANTS

Use suitable transformations "far” from the identity



Proof: forced case
|dea to conjugate L to a diagonal operator

© "REDUCTION IN DECREASING SYMBOLS"

L= LD =w- 8¥, + m30xx + MOy + Ro J

o Ro(p, x) pseudo-differential operator of order 0,
Ro(¢, x) : HS — HE, variable coefficients, Ry = O(¢),
o m3 =1+ O(g), m = O(¢), m, m3 € R, CONSTANTS

Use suitable transformations “far” from the identity
© "REDUCTION OF THE SIZE of Ry"

L, =0 010, =w- Op + M30sx + MOy + ™+ R, J

° RI/ = RV(<)07X) = O(ROZV)
o 1) = diag;e,(r), sup; "] = O(e),

KAM-type scheme, now transformations of H; — H;



Proof: forced case

Higher order term

L 1= w - Oy + O + €a3(@, X) oo ]

STEP 1: Under the symplectic change of variables

(Au) == (1 + Bx(p, x))ulp, x + B, X)) )

we get

L1:=ALA = w0, + (A M1 +ea3)(L+ 5x)*) 00 + O(0xx)
= w-0,+ c(¥)0ux + O(0x)

imposing
(14ea3)(1+ ) = (),

There exist solution c(¢) = 1, 8 = O(e)



Proof: forced case

STEP 2: Rescaling time

(Bu)(ip, x) = ulp + wq(p), x) J

we have

BLiB = B 14+w-0,q)(w-8y)+ B c(¢)0xx + O(Oxx)
= we)B te(p)(w - 8p) + B () Do + O(x)

solving
14w 0,0 = pe)e(9),  al) = O()
Dividing for 1u(e)B~tc(ip) we get

Ly :=w -0y + m3(e)dxex + O(0x), ms(e) :=pu~t(e) =1+ O(¢) J

which has the leading order with CONSTANT COEFFICIENTS



Proof: Autonomous case

Autonomous KdV

New further difficulties:

@ No external parameters. The frequency of the solutions is
NOT fixed a-priori. Frequency-amplitude modulation.

e KdV is completely resonant

o Construction of an approximate inverse

Ideas:
o WEAK BIRKHOFF-NORMAL FORM

@ General method to decouple the "tangential dynamics" from
the "normal dynamics", developed with P. Bolle
Procedure which reduces autonomous case to the forced one



Proof: Autonomous case

Step 1. Bifurcation analysis: WEAK Birkhoff normal form

Fix the “tangential sites” S := {—7n,..., —71,71,---,Jn} C Z\ {0}

Split the dynamics:
u(x) = v(x) + 2(x)
v(x) = Zjes ujeijx = "tangential component”

z(x) = > j¢s uje

YX = "normal component”

v

Hamiltonian

1 1
A = f/v3+7/zfdx+/v3dx—|—3/v2zdx
2 Jr 2 Jr T T
+ /v3dx—|—3/vzzdx+3/vzzdx—l—/z3dx—|—/f(u,ux)
T T T T T )

Goal: eliminate terms linear in z = {z = 0} is invariant manifold




Proof: Autonomous case

Theorem (Weak Birkhoff normal form)

There is a symplectic transformation ®g : H}(Tx) — H}(Tx)
Sp(u) =u+V(u), V(u)=NgV(Nguw),
where E := span{e¥*,0 < |j| < 6/S|} is finite-dimensional, s.t.

T == HO¢B:H2+H3+H4+H5+H267

3 |4
Hs = / z3dx—|—3/ vz2dx, Ha = —ZZMJJZ+H4,2+H4,3
T T

Jes

Hao = 6/ vzMs (05 1v) (051 2)) dx + 3/ 2°mo(07v)2dx
T T

Haz = R(vz®), Ms:= ZzzzR(v%qzq),

and H> collects all the terms of order at least six in (v, z).




Proof: Autonomous case

Fourier representation

u(x) = Y ue, u(x) = (uj)jen\{0}
JEZ\{0}

FIRST STEP. Eliminate the uj uj,u;, of H3 with at most one
index outside S. Since j1 + j> + j3 = 0 they are finitely many

® := the time 1-flow map generated by

F(u) == Z Fiy jo.js Ujy Uj Ujs
J1t+i2+j3=0

The vector field Xr is supported on finitely many sites
Xr(u) = HH2SXF(I_|HQSU)

= the flow is a finite dimensional perturbation of the identity
S=1Id+V, V=TIV,




Proof: Autonomous case

For the other steps:

@ Normalize the quartic monomials uj, uj, u uj,, ji1,j2,j3.ja € S.
The fourth order system Hj4 restricted to S turns out to be
integrable, i.e.

uj 4 .
-3 >jes % (non — isochronous rotators)

Now {z = 0} is an invariant manifold for H4 filled by
quasi-periodic solutions with a frequency which varies with the
amplitude



Proof: Autonomous case

Difference w.r.t. other Birkhoff normal forms

@ Kappeler-Péschel (KdV), Kuksin-Pdschel (NLS),
complete Birkhoff-normal form:
they remove/normalize also the terms O(z2), O(z3), O(z*)

@ Poschel (NLW), semi normal Birkhoff normal form:
normalized only the term O(z2)

© Kappeler Global Birkhoff normal form for KdV, 1-d-cubic-NLS

The above transformations are
(1) I + bounded , (2) I+ O(07Y), (3) & =F+ 00,
It is NOT enough for quasi-linear perturbations!

Our ® = Id + finite dimensional = it changes very little the third
order differential perturbations in KdV




Proof: Autonomous case

Rescaled action-angle variables:
u=cev(0,y)+ez:= € jes /&t lily; elliel® 4 ¢z

v
Hamiltonian:

He=N+P, N(0.y,z,6=a(é) y+5(N0,£z2) 0

V.

where
Frequency-amplitude map:
a(€) = & +*Ag

Variable coefficients normal form:

%(N(H-/ £)z, Z) (2(T) — %((8ZVH€)(67 0,0)[z], Z) L2(T)




Proof: Autonomous case

We look for quasi-periodic solutions of Xp_ with

Diophantine frequencies:
w =+ A€

Embedded torus equation:




Proof: Autonomous case
Main Difficulty

Invert linearized operator at approximate solution ip(y):

DiF(io(¢))[] =
0.0 — D9y He(i0)[0] — By He (i0)[7] — D2y He(i0) [2]
Oy + 899"/8(1'0)[5] + a@yHe(iO)[j’\] + 092 H:(io)[Z]
02 — 0x {09V 2 H-(i0)[0] + 8,V H.[7] + 8,V H-[2]}



Proof: Autonomous case

Approximate inverse. Zehnder

A linear operator T(X), X := i(y) is an APPROXIMATE INVERSE
of dF(X) if
|dF (X)T(X) = ld|| < [|F(X)]|

@ T(X) is an exact inverse of dF(X) at a solution
@ It is sufficient to invert dF(X) at a solution
Use the general method to construct an approximate inverse,

reducing to the inversion of quasi-periodically forced systems,
Berti-Bolle for autonomous NLS-NLW with multiplicative potential



Proof: Autonomous case
How to take advantage that iy is a solution?

The invariant torus ip(¢) := (Bo(¢), Yo(¢), 20()) is ISOTROPIC )

—

the transformation G of the phase space T” x R" x Hg1

0 Y 0o(v)
y| =G| n|:=|»{)+ Do) "n+ Dzo(bo(v)) "0 w
z w 2(Y) +w

where %(6) := z(6, *(0)), is SYMPLECTIC

In the new symplectic coordinates, iy is the trivial embedded torus

(¢7 m, W) = (907 0, 0)



Transformed Hamiltonian

1
K := H: 0 G =Koo(?) + Kio(¥)n + (Ko1(¥), w) 2 + §K20(¢)77 i

1

Hamiltonian system in new coordinates:

P = Kio(¥) + Kao(¥)n + K (#)w + O(n? + w?)
i = =0y Koo(¥) — 8y Kro(¥)n — By Kor(¥)w + O(n? + w?)
W = 0k (Ko1(v) + Ki1(¥)n + Koa(¥)w) + O(n? + w?)

Since (¢, n, w) = (wt,0,0) is a solution =

OyKoo(1) =0, Kio(¢) =w, Kor(s)) =0




Proof: Autonomous case

—

KAM (variable coefficients) normal-form

1
K:=H.o G =const +w-n+ §K20(7,f'))77 -1+ (K (¥)n, w)

1 ‘
+ 5 (Koa()w, w) 5 + O(|n] + wl)®

Hamiltonian system in new coordinates:

1 = w+ Kao(¥)n + K (¥)w + O(n? + w?)
n=0(n*+ w?)
w = O (K11(¥)n + Koz(¥)w) 4+ O(n? + w?)

= in the NEW variables the linearized equations at (¢, 0, 0) simplify!



Proof: Autonomous case

Linearized equations at the invariant torus (¢, 0, 0)

D) — Kao ()71 — K ()W Aa
o7 — | ab
0w — OxK11(p)) — Ox Koz ()W Ac

may be solved in a TRIANGULAR way

Step 1: solve second equation

’?\]:auleb—l-T]o, 770€RV

Remark: Ab has zero average by reversibility, ng fixed later

Step 2: solve third equation

LoW = Ac+ 0Ku(p)i, Lo :=w- 8, — 0xKo(p),

This is a quasi-periodically forced linear KdV operator!




Proof: Autonomous case

Reduction of the linearized op. on the normal directions

Loh =N (w0,h+O(a105h) +0x (a0h) — 20 Ro[h] — O R.[H])

a1—1:=0(3), ag:=ep1+e’p+...

The remainders Ry, R, are finite range (very regularizing!)

v

Reduce £, to constant coefficients as in forced case, hence invert it
@ Terms O(¢c), O(£?) are NOT perturbative: ey~1, e2y7 1 is
large! v = o(£?)

@ These terms eliminated by algebraic arguments (integrability
property of Birkhoff normal form)



Proof: Autonomous case

Step 3: solve first equation

8 = Kao(p)7i + K{i ()W — Aa

Since
Kao(p) = 3e%Id + o(<?)

the matrix Kjg is invertible and we choose 79 (the average of 7)) so
that the right hand side has zero average. Hence

9 = 037 (Kaolip) + K () — 23)

This completes the construction of an approximate inverse



HAPPY BIRTHDAY !! J
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