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KdV
∂tu + uxxx − 3∂xu2 +N4(x , u, ux , uxx , uxxx ) = 0 , x ∈ T

Quasi-linear Hamiltonian perturbation
N4 := −∂x{(∂uf )(x , u, ux )}+ ∂xx{(∂ux f )(x , u, ux )}

N4 = a0(x , u, ux , uxx ) + a1(x , u, ux , uxx )uxxx

N4(x , εu, εux , εuxx , εuxxx ) = O(ε4) , ε→ 0

f (x , u, ux ) = O(|u|5 + |ux |5), f ∈ Cq(T× R× R,R)

Physically important for perturbative derivation from water-waves
(that I learned from Walter Craig)
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Hamiltonian PDE
ut = XH(u) , XH(u) := ∂x∇L2H(u)

Hamiltonian KdV

H =

∫
T

u2
x
2 + u3 + f (x , u, ux )dx

where the density f (x , u, ux ) = O(|(u, ux )|5)

Phase space

H1
0 (T) :=

{
u(x) ∈ H1(T,R) :

∫
T u(x)dx = 0

}
Non-degenerate symplectic form:

Ω(u, v) :=
∫
T(∂−1

x u) v dx
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Goal: look for small amplitude quasi-periodic solutions

Definition: quasi-periodic solution with n frequencies
u(t, x) = U(ωt, x) where U(ϕ, x) : Tn × T→ R,

ω ∈ Rn(= frequency vector) is irrational ω · k 6= 0 , ∀k ∈ Zn \ {0}
=⇒ the linear flow {ωt}t∈R is dense on Tn

The torus-manifold

Tn 3 ϕ 7→ u(ϕ, x) ∈ phase space

is invariant under the flow evolution of the PDE



The problem Literature Main results Proof: forced case Proof: Autonomous case

Linear Airy eq.

ut + uxxx = 0, x ∈ T

Solutions: (superposition principle)

u(t, x) =
∑

j∈Z\{0}
ajeij3teijx

Eigenvalues j3 = "normal frequencies"
Eigenfunctions: eijx = "normal modes"

All solutions are 2π- periodic in time: completely resonant

⇒ Quasi-periodic solutions are a completely nonlinear phenomenon
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KdV is completely integrable
ut + uxxx − 3∂xu2 = 0

All solutions are periodic, quasi-periodic, almost periodic

What happens under a small perturbation?
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KAM theory

Kuksin ’98, Kappeler-Pöschel ’03: KAM for KdV

ut + uxxx + uux + ε∂x f (x , u) = 0

1 semilinear perturbation ∂x f (x , u)

2 Also true for Hamiltonian perturbations

ut + uxxx + uux + ε∂x |∂x |1/2f (x , |∂x |1/2u) = 0

of order 2

|j3 − i3| ≥ i2 + j2, i 6= j =⇒ KdV gains up to 2 spatial derivatives

3 for quasi-linear KdV? OPEN PROBLEM
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Literature: KAM for "unbounded" perturbations

Liu-Yuan ’10 for Hamiltonian DNLS (and Benjamin-Ono)
iut − uxx + Mσu + iε f (u, ū)ux = 0

Zhang-Gao-Yuan ’11 Reversible DNLS
iut + uxx = |ux |2u

Craig-Wayne periodic solutions, Lyapunov-Schmidt + Nash-Moser

Bourgain ’96, Derivative NLW
ytt − yxx + my + y2

t = 0 , m 6= 0,

Craig ’00, Hamiltonian DNLW
ytt − yxx + g(x)y = f (x ,Dβy) , D :=

√
−∂xx + g(x),



The problem Literature Main results Proof: forced case Proof: Autonomous case

quasi-periodic solutions

Berti-Biasco-Procesi ’12, ’13, reversible DNLW
utt − uxx + mu = g(x , u, ux , ut)

For quasi-linear PDEs: Periodic solutions:
Iooss-Plotinikov-Toland, Iooss-Plotnikov, ’01-’10,
Water waves: quasi-linear equation,
new ideas for conjugation of linearized operator
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Main results

Hamiltonian density:

f (x , u, ux ) = f5(u, ux ) + f≥6(x , u, ux )

f5 polynomial of order 5 in (u, ux ); f≥6(x , u, ux ) = O(|u|+ |ux |)6

Reversibility condition:
f (x , u, ux ) = f (−x , u,−ux )

KdV-vector field XH(u) := ∂x∇H(u) is reversible w.r.t the
involution

%u := u(−x) , %2 = I , −%XH(u) = XH(%u)
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Theorem (’13, P. Baldi, M. Berti, R. Montalto)

Let f ∈ Cq (with q := q(n) large enough). Then, for “generic”
choice of the "tangential sites"

S := {−̄n , . . . ,−̄1, ̄1 , . . . , ̄n} ⊂ Z \ {0} ,

the hamiltonian and reversible KdV equation
∂tu + uxxx − 3∂x u2 +N4(x , u, ux , uxx , uxxx ) = 0 , x ∈ T ,

possesses small amplitude quasi-periodic solutions with Sobolev
regularity Hs , s ≤ q, of the form

u =
∑

j∈S

√
ξj eiω∞j (ξ) teijx + o(

√
ξ), ω∞j (ξ) = j3 + O(|ξ|)

for a "Cantor-like" set of "initial conditions" ξ ∈ Rn with density 1
at ξ = 0. The linearized equations at these quasi-periodic solutions
are reduced to constant coefficients and are stable.
If f = f≥7 = O(|(u, ux )|7) then any choice of tangential sites
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Tangential sites

Explicit conditions:
Hypothesis (S3) j1 + j2 + j3 6= 0 for all j1, j2, j3 ∈ S
Hypothesis (S4) @j1, . . . , j4 ∈ S such that

j1 + j2 + j3 + j4 6= 0, j31 + j32 + j33 + j34 − (j1 + j2 + j3 + j4)3 = 0

1 (S3) used in the linearized operator. If f5 = 0 then not needed
2 If also f6 = 0 then (S4) not needed (used in

Birkhoff-normal-form)

“genericity”:
After fixing {̄1, . . . , ̄n}, in the choice of ̄n+1 ∈ N there are only
finitely many forbidden values
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Comments

1 A similar result holds for

mKdV: focusing/defocusing

∂tu + uxxx ± ∂xu3 +N4(x , u, ux , uxx , uxxx ) = 0 , x ∈ T

for all the tangential sites S := {−̄n, . . . ,−̄1, ̄1, . . . , ̄n}
such that

2
2n − 1

n∑
i=1

̄ 2
i /∈ N

2 If f = f (u, ux ) the result is true for all the tangential sites S
3 Also for generalized KdV (not integrable), with normal form

techniques of Procesi-Procesi
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Linear stability

(L): linearized equation ∂th = ∂x∂u∇H(u(ωt, x))h
ht + a3(ωt, x)hxxx + a2(ωt, x)hxx + a1(ωt, x)hx + a0(ωt, x)h = 0

There exists a quasi-periodic (Floquet) change of variable

h = Φ(ωt)(ψ, η, v) , ψ ∈ Tν , η ∈ Rν , v ∈ Hs
x ∩ L2

S⊥

which transforms (L) into the constant coefficients system
ψ̇ = bη
η̇ = 0
v̇j = iµjvj , j /∈ S , µj ∈ R

=⇒ η(t) = η0, vj(t) = vj(0)eiµj t =⇒ ‖v(t)‖s = ‖v(0)‖s : stability
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Forced quasi-linear perturbations of Airy

Use ω = λ~ω ∈ Rn as 1-dim. parameter

Theorem (Baldi, Berti, Montalto , to appear Math. Annalen)
There exist s := s(n) > 0, q := q(n) ∈ N, such that:
Let ~ω ∈ Rn diophantine. For every quasi-linear Hamiltonian
nonlinearity f ∈ Cq for all ε ∈ (0, ε0) small enough, there is a
Cantor set Cε ⊂ [1/2, 3/2] of asymptotically full measure, i.e.

|Cε| → 1 as ε→ 0,

such that for all λ ∈ Cε the perturbed Airy equation

∂tu + ∂xxxu + εf (λ~ωt, x , u, ux , uxx , uxxx ) = 0

has a quasi-periodic solution u(ε, λ) ∈ Hs (for some s ≤ q) with
frequency ω = λ~ω and satisfying ‖u(ε, λ)‖s → 0 as ε→ 0.
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Key: spectral analysis of quasi-periodic operator

L = ω ·∂ϕ+∂xxx +a3(ϕ, x)∂xxx +a2(ϕ, x)∂xx +a1(ϕ, x)∂x +a0(ϕ, x)

ai = O(ε), i = 0, 1, 2, 3
Main problem: the non constant coefficients term a3(ϕ, x)∂xxx !

Main difficulties:
1 The usual KAM iterative scheme is unbounded
2 We expect an estimate of perturbed eigenvalues

µj(ε) = j3 + O(εj3)

which is NOT sufficient for verifying second order Melnikov

|ω · `+ µj(ε)− µi (ε)| ≥ γ|j3 − i3|
〈`〉τ

, ∀`, j , i
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Idea to conjugate L to a diagonal operator

1 "REDUCTION IN DECREASING SYMBOLS"

L1 := Φ−1LΦ = ω · ∂ϕ + m3∂xxx + m1∂x +R0

R0(ϕ, x) pseudo-differential operator of order 0,
R0(ϕ, x) : Hs

x → Hs
x , variable coefficients, R0 = O(ε),

m3 = 1 + O(ε), m1 = O(ε), m1,m3 ∈ R, constants

Use suitable transformations ”far” from the identity

2 "REDUCTION OF THE SIZE of R0"

Lν := Φ−1
ν L1Φν = ω · ∂ϕ + m3∂xxx + m1∂x + r (ν) +Rν

Rν = Rν(ϕ, x) = O(R0
2ν )

r (ν) = diagj∈Z(r (ν)
j ), supj |r

(ν)
j | = O(ε),

KAM-type scheme, now transformations of Hs
x → Hs

x
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Higher order term

L := ω · ∂ϕ + ∂xxx + εa3(ϕ, x)∂xxx

STEP 1: Under the symplectic change of variables

(Au) := (1 + βx (ϕ, x))u(ϕ, x + β(ϕ, x))

we get

L1 := A−1LA = ω · ∂ϕ + (A−1(1 + εa3)(1 + βx )3)∂xxx + O(∂xx )

= ω · ∂ϕ + c(ϕ)∂xxx + O(∂xx )

imposing
(1 + εa3)(1 + βx )3 = c(ϕ) ,

There exist solution c(ϕ) ≈ 1, β = O(ε)
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STEP 2: Rescaling time

(Bu)(ϕ, x) = u(ϕ+ ωq(ϕ), x)

we have

B−1L1B = B−1(1 + ω · ∂ϕq)(ω · ∂ϕ) + B−1c(ϕ)∂xxx + O(∂xx )

= µ(ε)B−1c(ϕ)(ω · ∂ϕ) + B−1c(ϕ)∂xxx + O(∂xx )

solving
1 + ω · ∂ϕq = µ(ε)c(ϕ) , q(ϕ) = O(ε)

Dividing for µ(ε)B−1c(ϕ) we get

L2 := ω · ∂ϕ + m3(ε)∂xxx + O(∂x ) , m3(ε) := µ−1(ε) = 1 + O(ε)

which has the leading order with constant coefficients
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Autonomous KdV

New further difficulties:
No external parameters. The frequency of the solutions is
not fixed a-priori. Frequency-amplitude modulation.
KdV is completely resonant
Construction of an approximate inverse

Ideas:
Weak Birkhoff-normal form
General method to decouple the "tangential dynamics" from
the "normal dynamics", developed with P. Bolle
Procedure which reduces autonomous case to the forced one
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Step 1. Bifurcation analysis: weak Birkhoff normal form

Fix the “tangential sites” S := {−̄n, . . . ,−̄1, ̄1, . . . , ̄n} ⊂ Z \ {0}

Split the dynamics:
u(x) = v(x) + z(x)

v(x) =
∑

j∈S ujeijx = ”tangential component”

z(x) =
∑

j /∈S ujeijx = ”normal component”

Hamiltonian

H =
1
2

∫
T
v2

x +
1
2

∫
T
z2

x dx +

∫
T
v3dx + 3

∫
T
v2zdx

+

∫
T
v3dx + 3

∫
T
v2zdx + 3

∫
T
vz2dx +

∫
T
z3dx +

∫
T
f (u, ux )

Goal: eliminate terms linear in z =⇒ {z = 0} is invariant manifold
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Theorem (Weak Birkhoff normal form)
There is a symplectic transformation ΦB : H1

0 (Tx )→ H1
0 (Tx )

ΦB(u) = u + Ψ(u), Ψ(u) = ΠE Ψ(ΠEu),

where E := span{eijx , 0 < |j | ≤ 6|S|} is finite-dimensional, s.t.

H := H ◦ ΦB = H2 +H3 +H4 +H5 +H≥6 ,

H3 :=

∫
T
z3dx + 3

∫
T
vz2dx , H4 := −3

2
∑
j∈S

|uj |4

j2 +H4,2 +H4,3

H4,2 := 6
∫

T
vzΠS

(
(∂−1

x v)(∂−1
x z)

)
dx + 3

∫
T
z2π0(∂−1

x v)2dx ,

H4,3 := R(vz3) , H5 :=
∑5

q=2
R(v5−qzq),

and H≥6 collects all the terms of order at least six in (v , z).
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Fourier representation

u(x) =
∑

j∈Z\{0}
ujeijx , u(x)←→ (uj)j∈Z\{0}

First Step. Eliminate the uj1uj2uj3 of H3 with at most one
index outside S. Since j1 + j2 + j3 = 0 they are finitely many

Φ := the time 1-flow map generated by

F (u) :=
∑

j1+j2+j3=0
Fj1,j2,j3uj1uj2uj3

The vector field XF is supported on finitely many sites
XF (u) = ΠH2SXF

(
ΠH2Su

)
=⇒ the flow is a finite dimensional perturbation of the identity

Φ = Id + Ψ , Ψ = ΠH2S ΨΠH2S
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For the other steps:

Normalize the quartic monomials uj1uj2uj3uj4 , j1, j2, j3, j4 ∈ S.
The fourth order system H4 restricted to S turns out to be
integrable, i.e.

−3
2
∑

j∈S
|uj |4
j2 (non − isochronous rotators)

Now {z = 0} is an invariant manifold for H4 filled by
quasi-periodic solutions with a frequency which varies with the
amplitude
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Difference w.r.t. other Birkhoff normal forms
1 Kappeler-Pöschel (KdV), Kuksin-Pöschel (NLS),
complete Birkhoff-normal form:
they remove/normalize also the terms O(z2),O(z3),O(z4)

2 Pöschel (NLW), semi normal Birkhoff normal form:
normalized only the term O(z2)

3 Kappeler Global Birkhoff normal form for KdV, 1-d-cubic-NLS
The above transformations are

(1) I + bounded , (2) I + O(∂−1
x ) , (3) Φ = F + O(∂−1

x ) ,

It is not enough for quasi-linear perturbations!

Our Φ = Id + finite dimensional =⇒ it changes very little the third
order differential perturbations in KdV



The problem Literature Main results Proof: forced case Proof: Autonomous case

Rescaled action-angle variables:

u := εvε(θ, y) + εz := ε
∑

j∈S

√
ξj + |j |yj eiθj eijx + εz

Hamiltonian:
Hε = N + P , N (θ, y , z , ξ) = α(ξ) · y + 1

2
(
N(θ, ξ)z , z

)
L2(T)

where
Frequency-amplitude map:

α(ξ) = ω̄ + ε2Aξ

Variable coefficients normal form:
1
2
(
N(θ, ξ)z , z

)
L2(T)

= 1
2
(
(∂z∇Hε)(θ, 0, 0)[z ], z

)
L2(T)
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We look for quasi-periodic solutions of XHε with

Diophantine frequencies:
ω = ω̄ + ε2Aξ

Embedded torus equation:
∂ω i(ϕ)− XHε(i(ϕ)) = 0

Functional setting

F(ε,X ) :=

 ∂ωθ(ϕ)− ∂yHε(i(ϕ))
∂ωy(ϕ) + ∂θHε(i(ϕ))
∂ωz(ϕ)− ∂x∇zHε(i(ϕ))

 = 0

unknown: X := i(ϕ) := (θ(ϕ), y(ϕ), z(ϕ))
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Main Difficulty

Invert linearized operator at approximate solution i0(ϕ):

DiF(i0(ϕ))[̂ı] =

∂ω θ̂ − ∂θyHε(i0)[θ̂]− ∂yyHε(i0)[ŷ ]− ∂zyHε(i0)[ẑ ]

∂ω ŷ + ∂θθHε(i0)[θ̂] + ∂θyHε(i0)[ŷ ] + ∂θzHε(i0)[ẑ ]

∂ω ẑ − ∂x
{
∂θ∇zHε(i0)[θ̂] + ∂y∇zHε[ŷ ] + ∂z∇zHε[ẑ ]

}
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Approximate inverse. Zehnder
A linear operator T (X ), X := i(ϕ) is an approximate inverse
of dF (X ) if

‖dF (X )T (X )− Id‖ ≤ ‖F (X )‖

1 T (X ) is an exact inverse of dF (X ) at a solution
2 It is sufficient to invert dF (X ) at a solution

Use the general method to construct an approximate inverse,
reducing to the inversion of quasi-periodically forced systems,
Berti-Bolle for autonomous NLS-NLW with multiplicative potential
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How to take advantage that i0 is a solution?

The invariant torus i0(ϕ) := (θ0(ϕ), y0(ϕ), z0(ϕ)) is ISOTROPIC

=⇒

the transformation G of the phase space Tn × Rn × HS⊥θy
z

 := G

ψη
w

 :=

 θ0(ψ)
y0(ψ) + Dθ0(ψ)−Tη + Dz̃0(θ0(ψ))T∂−1

x w
z0(ψ) + w


where z̃0(θ) := z0(θ−1

0 (θ)), is SYMPLECTIC

In the new symplectic coordinates, i0 is the trivial embedded torus

(ψ, η,w) = (ϕ, 0, 0)
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Transformed Hamiltonian

K := Hε ◦ G =K00(ψ) + K10(ψ)η + (K01(ψ),w)L2
x

+
1
2K20(ψ)η · η

+
(
K11(ψ)η,w

)
L2

x
+

1
2
(
K02(ψ)w ,w

)
L2

x
+ O(|η|+ |w |)3

Hamiltonian system in new coordinates:
ψ̇ = K10(ψ) + K20(ψ)η + KT

11(ψ)w + O(η2 + w2)

η̇ = −∂ψK00(ψ)− ∂ψK10(ψ)η − ∂ψK01(ψ)w + O(η2 + w2)

ẇ = ∂x
(
K01(ψ) + K11(ψ)η + K02(ψ)w

)
+ O(η2 + w2)

Since (ψ, η,w) = (ωt, 0, 0) is a solution =⇒

∂ψK00(ψ) = 0 , K10(ψ) = ω , K01(ψ) = 0
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=⇒

KAM (variable coefficients) normal-form

K := Hε ◦ G = const + ω · η +
1
2K20(ψ)η · η +

(
K11(ψ)η,w

)
L2

x

+
1
2
(
K02(ψ)w ,w

)
L2

x
+ O(|η|+ |w |)3

Hamiltonian system in new coordinates:
ψ̇ = ω + K20(ψ)η + KT

11(ψ)w + O(η2 + w2)

η̇ = O(η2 + w2)

ẇ = ∂x
(
K11(ψ)η + K02(ψ)w

)
+ O(η2 + w2)

=⇒ in the NEW variables the linearized equations at (ϕ, 0, 0) simplify!
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Linearized equations at the invariant torus (ϕ, 0, 0)
 ∂ωψ̂ − K20(ϕ)η̂ − KT

11(ϕ)ŵ
∂ωη̂

∂ωŵ − ∂xK11(ϕ)η̂ − ∂xK02(ϕ)ŵ

 =

∆a
∆b
∆c


may be solved in a TRIANGULAR way

Step 1: solve second equation

η̂ = ∂−1
ω ∆b + η0 , η0 ∈ Rν

Remark: ∆b has zero average by reversibility, η0 fixed later

Step 2: solve third equation
Lωŵ = ∆c + ∂xK11(ϕ)η̂ , Lω := ω · ∂ϕ − ∂xK02(ϕ) ,

This is a quasi-periodically forced linear KdV operator!
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Reduction of the linearized op. on the normal directions

Lωh = ΠS⊥
(
ω·∂ϕh+∂xx (a1∂xh)+∂x

(
a0h

)
−ε2∂xR2[h]−∂xR∗[h]

)
a1 − 1 := O(ε3) , a0 := εp1 + ε2p2 + . . .

The remainders R2,R∗ are finite range (very regularizing!)

Reduce Lω to constant coefficients as in forced case, hence invert it
1 Terms O(ε),O(ε2) are not perturbative: εγ−1, ε2γ−1 is

large! γ = o(ε2)

2 These terms eliminated by algebraic arguments (integrability
property of Birkhoff normal form)
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Step 3: solve first equation

∂ωψ̂ = K20(ϕ)η̂ + KT
11(ϕ)ŵ −∆a

Since
K20(ϕ) = 3ε2Id + o(ε2)

the matrix K20 is invertible and we choose η0 (the average of η̂) so
that the right hand side has zero average. Hence

ψ̂ = ∂−1
ω

(
K20(ϕ)η̂ + KT

11(ϕ)ŵ −∆a
)

This completes the construction of an approximate inverse
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HAPPY BIRTHDAY !!
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