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The big picture

Consider the Hamiltonian PDE

ut = J
δH

δu
, (1)

posed in a suitable function space of periodic functions. We
examine traveling-wave solutions u(x, t) = U(x− ct) of this
system. These satisfy

− cUx = J
δH

δU
. (2)



Assumptions

1. For a range of c values U = 0 is a solution of (2).

c

Amplitude

2. The linearization around u = 0 of (1) is dispersive.
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Digression

I It is possible for linear, constant coefficient
Hamiltonian PDEs to be non-dispersive.

Example.

H =

∫ 2π

0

qxpxdx, J =

(
0 1
−1 0

)
:

qt = qxx, pt = −pxx.

I Is it possible for linear, constant coefficient, dispersive
PDEs to be non-Hamiltonian?
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The big picture, continued

I As we will see, the u = 0 solution is spectrally
(neutrally) stable.

I As we increase the amplitude of the solution, the
eigenvalues of the spectral stability problem move
continuously in C.
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continuously in C.



The big picture, continued

I Due to the quadrufold symmetry of the problem, the
only way for eigenvalues to leave the imaginary axis is
by collision.



The big picture, continued

I Given J and H, we shall establish necessary conditions
for eigenvalue collisions to result in eigenvalues off the
imaginary axis, resulting in spectral instabilities of
small-amplitude traveling wave solutions.



The big picture, continued

I The goal is to obtain conditions that are easily used
and verified, at the expense of the precision of the
conclusions reached. In other words, the goal is
usability over rigor.

Almost all conclusions are
formulated in terms of the dispersion relation of the
linear problem.
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The big picture, continued

I All calculations take place at the bifurcation point of
the trivial solution branch. By continuity, any stability
conclusion holds for solutions on the bifurcation
branch of small, but nonzero amplitude.

c

Amplitude

I In effect, the theory is finite dimensional, as only a
finite number of eigenvalues participate in a collision.
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Some literature

I MacKay & Saffman (1986): a criterion for the onset of
instability through the collision of eigenvalues in the
water wave problem.

I MacKay (1987): the finite-dimensional case.



Scalar Hamiltonian PDES with J = ∂x

(Examples: KdV, Whitham, . . . )

We consider equations whose linearization is of the form

ut = −iω(−i∂x)u,

where ω(k) (real valued) is the dispersion relation:

ω(k) =
∞∑
n=0

αnk
2n+1, αj ∈ R,

and

H = −1

2

∫ 2π

0

∞∑
n=0

αnu
2
nxdx.

Note that
∫ 2π

0
udx is a Casimir.
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Scalar Hamiltonian PDES with J = ∂x

In a moving coordinate frame,

ut − cux = −iω(−i∂x)u
⇒ ut = −iΩ(−i∂x)u,

with Ω(k) = ω(k)− kc.



Scalar Hamiltonian PDES with J = ∂x

Step 1. Bifurcation point. We need a singular Jacobian,
requiring

Ω(k) = 0 ⇒ c =
ω(k)

k
,

the phase speed.

For periodic solutions, we need k = N , integer, so that

c =
ω(N)

N
.

Typically, we choose N = 1.
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Scalar Hamiltonian PDES with J = ∂x

Step 2. Stability analysis. Let u(x, t) = eλtU(x) + c.c.,
with

U(x) =
∞∑

n=−∞

ane
i(n+µ)x,

with µ ∈ [−1/2, 1/2). We get

λµn = −iΩ(n+ µ).

I All λ
(µ)
n are imaginary. Thus the zero solution is

neutrally spectrally stable.



Scalar Hamiltonian PDES with J = ∂x

Step 3. Eigenvalue collisions. We need

λ(µ)n = λ(µ)m

⇒ ω(n+ µ)− ω(m+ µ)

n−m
=
ω(N)

N
.

Graphically, this is a condition expressing the equality of
two slopes.



N

ω(m+ µ)

ω(n+ µ)

ω(k)

k

n+ µm+ µ



Scalar Hamiltonian PDES with J = ∂x

Step 4. Krein signature.

I The contribution to the Hamiltonian from a single
mode is ∼ |an|2Ω(n+ µ)/(n+ µ). The Krein signature
of this mode is the sign of this contribution.

I In order for two colliding eigenvalues to leave the
imaginary axis, it is necessary that they have opposite
Krein signature.

I After simplification, this requires mn < 0.
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Scalar Hamiltonian PDES with J = ∂x: Summary

Consider a Hamiltonian PDEs with J = ∂x, whose
linearization has the real-valued dispersion relation ω(k).
In order for small-amplitude solutions of period 2πN to be
susceptible to high-frequency instabilities, it is necessary
that there exist m,n ∈ Z and µ ∈ [−1/2, 1/2) such that

I λ
(µ)
n = i(n+ µ)ω(N)

N
− iω(n+ µ) 6= 0.

I (Collision condition)

ω(n+ µ)− ω(m+ µ)

n−m
=
ω(N)

N
.

I (Krein signature condition) mn < 0.



Example. KdV-like equations.

Consider equations of the form

ut = ∂x(uxx +N(u)),

where limε→0N(εu)/ε = 0. Then ω = k3.

ω(k)

k

µ

λ
(µ)
n
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Example. KdV-like equations.

I There are no collisions away from λ = 0. Thus
small-amplitude periodic solutions of KdV-like
equations are not susceptible to high-frequency
instabilities.

I This result includes KdV, mKdV, generalized KdV,
etc.

I Solutions of superKdV-like equations are susceptible
to high-frequency instabilities.

ut = uxxx + αuxxxxx + nonlinear.
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2. Two-dimensional Hamiltonian PDEs with

canonical J

(Examples: Sine-Gordon, the water wave problem, . . . )

Here

J =

(
0 1
−1 0

)
,

and we consider equations of the form

qt =
δH

δp
, pt = −δH

δq
.



2-D Hamiltonian PDEs with canonical J

The Hamiltonian of their linearization can be written as

H =

∫ 2π

0

(
1

2

∞∑
j=0

βjp
2
jx +

1

2

∞∑
j=0

γjq
2
jx + p

∞∑
j=0

αjqjx

)
dx,

so that

qt =
∞∑
j=0

αjqjx +
∞∑
j=0

(−1)jβjp2jx,

pt = −
∞∑
j=0

(−1)jγjq2jx −
∞∑
j=0

(−1)jαjpjx.



2-D Hamiltonian PDEs with canonical J

The dispersion relation is given by

det

(
iω +

∑∞
j=0 αj(ik)j

∑∞
j=0 βjk

2j

−
∑∞

j=0 γjk
2j iω −

∑∞
j=0 αj(−1)j(ik)j

)
= 0,

which gives ω1(k) and ω2(k), both real for real k.

In a moving coordinate frame, the Hamiltonian has the
extra term c

∫ 2π

0
pqxdx.



2-D Hamiltonian PDEs with canonical J
Step 1. Bifurcation point.
As before, the bifurcation points from the trivial solution
are found by finding for which value of c the Jacobian is
singular. This time, there are two solutions.

c1,2 =
ω1,2(k)

k
=
ω1,2(N)

N
.

since k ∈ Z, for periodic solutions.

c

Amplitude



2-D Hamiltonian PDEs with canonical J

Step 2. Stability analysis. Working with the first
branch of solutions, we obtain

λ
(µ)
n,j = i(n+ µ)c1 − iωj(n+ µ),

for j = 1, 2, µ ∈ [−1/2, 1/2), n ∈ Z.

I All λ
(µ)
n,j are imaginary. Thus the zero solution is

neutrally spectrally stable.



2-D Hamiltonian PDEs with canonical J

Step 3. Eigenvalue collisions. We need

λ
(µ)
n,j1

= λ
(µ)
m,j2

⇒ ωj1(n+ µ)− ωj2(m+ µ)

n−m
=
ω1(N)

N
.

Once more, this is a condition expressing the equality of
two slopes.



N

ω(k)

k

n+ µm+ µ

ω1(k)

ω2(k)



2-D Hamiltonian PDEs with canonical J

Step 4. Krein signature.

I The linear system may be written as ut = JLu, where
L is the second variation of H. The Krein signature of
the v mode may also be computed as the sign of v∗Lv.

I For our setting, one finds that the signature of the
eigenmode (Q

(µ)
n,j , P

(µ)
n,j )T is the sign of

λ
(µ)
n,j det

(
Q

(µ)
n,j P

(µ)
n,j

Q
(µ)
n,j

∗
P

(µ)
n,j

∗

)
.
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2-D Hamiltonian PDEs with canonical J

I Explicitly, the necessary condition for opposite Krein
signatures is

∞∑
j=0

γj(n+ µ)2j
∞∑
j=0

γj(m+ µ)2j×(
ωj1(n+ µ) +

∞∑
j=0

α2j+1(−1)j(n+ µ)2j+1

)
×(

ωj2(m+ µ) +
∞∑
j=0

α2j+1(−1)j(m+ µ)2j+1

)
< 0.



2-D Hamiltonian PDEs with canonical J :

Summary

Consider a Hamiltonian PDEs with canonical J , whose
linearization has the quadratic Hamiltonian

H =
∫ 2π

0

(
1
2

∑∞
j=0 βjp

2
jx + 1

2

∑∞
j=0 γjq

2
jx + p

∑∞
j=0 αjqjx

)
dx

with real-valued dispersion relations ω1,2(k). In order for
small-amplitude solutions of period 2πN to be susceptible
to high-frequency instabilities, it is necessary that there
exist j1,2 ∈ (1, 2), m,n ∈ Z and µ ∈ [−1/2, 1/2) such that

I (Collision condition)

ωj1(n+ µ)− ωj2(m+ µ)

n−m
=
ω(N)

N
.

I (Krein signature condition) See previous slide.



Example. The water wave problem.

The linearized water wave problem is

ηt = −i tanh(−ih∂x)qx,
qt = −gη,

with

H =

∫ 2π

0

(
1

2
q(−i tanh(−ih∂x)qx) +

1

2
gη2
)
dx,

and

ω2 = gk tanh(kh).



Example. The water wave problem.

ω(k)

k
µ

λ
(µ)
j,n

→ there are collisions!



Example. The water wave problem.

I The Krein condition gives ωj1ωj2g
2 < 0, which is

always satisfied.

I This confirms that for the water wave problem all
colliding eigenvalues leave the imaginary axis.
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Example. The Whitham equation vs. the water

wave problem.
Consider

ut + ∂xN(u) +

∫ ∞
−∞

K(x− y)uy(y, t)dy = 0

⇒ ut + ∂x

(
N(u) + ∂x

∫ ∞
−∞

K(x− y)u(y, t)dy

)
= 0,

where

K(x) =
1

2π

∫ ∞
−∞

c(k)eikxdk,

with c(k) = ω(k)/k =
√
g tanh(kh)/k.

The Hamiltonian of
the linearized equation is

H = −1

2

∫ ∞
−∞

∫ ∞
−∞

K(x− y)u(x, t)u(y, t)dxdy.
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Example. The Whitham equation

µ

λ
(µ)
j,n

I There are no collisions (except at λ = 0).

I The Whitham equation does not capture the
high-frequency instabilities of small-amplitude
solutions of the water wave problem.



Thank you!

Questions?

Happy Birthday, Walter!
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