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1 Introduction: weak turbulence (WT)

(One of) origines: Rudolf Peierls, in Annalen der Physik 3 (1929). See in Selected Papers

of Sir Rudolf Peierl, World Scientific, 1997. Modern state of affairs see in

[ZLF] Zakharov, Lvov, Falkovich, Kolmogorov Spectra of Turbulence, Springer 1992.

[Naz] S. Nazarenko, Wave Turbulence, Springer 2011.

The method of WT applies to various equations. E.g., to NLS:

A) Deterministic setting. Consider NLS equation:

u̇− i∆u+ iρ|u|2u = 0, x ∈ TdL = Rd/(LZd); ρ = const, ρ > 0.

WT deals with small solutions u ∼ ε, 0 < ε� 1. Let us better consider solutions of

order 1 of the rescaled equation

(NLS) u̇− i∆u+ ε2ρ i|u|2u = 0, x ∈ TdL .

Take the exponential basis {ek = eik·x,k ∈ Zd/L =: ZdL}. Then

−∆ek = λkek; λk = |k|2 , k ∈ ZdL .
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So there is plenty of exact resonances in the spectrum of the linear system, corresponding

to ε = 0. – This is a prerequisite for WT.

Now we have an extreme case: the linear system is completely resonant – all its solutions

are periodic with the same period 2πL2. THIS is not needed for the WT, but I will use this

property in my analysis of the equation.
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Decompose u in the Fourier series, u(t, x) =
∑
uk(t)ek(x), and write (NLS) as

(*) u̇k + iλkuk = −ε2ρi
∑

k1+k2=k3+k

uk1uk2 ūk3 , k ∈ ZdL.

In WT they do the following:

� Study solutions for (∗) with a “typical” initial data u(0) = u0, during “long” time.

Claim: For large values of time only resonant terms in (∗) are important.

� Study solutions when ε→ 0, L→∞, by replacing “everywhere” sums
∑

k∈Zd
L

by

integrals
∫
k∈Rd . In particular, study under that limit the energy spectrum |uk(t)|2, and

prove that it has the Kolmogorov-Zakharov form:

(KZ spectrum) 〈|uk(t)|2〉 ∼ |k|−κ , κ > 0 ,

if |k| “belongs to the inertial range”. Here “〈·〉” indicates certain averaging.

It is not quite clear in what order we send ε→ 0 and L→∞. It may be better to talk not

about the limit of WT, but about WT limits.
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“... the correct ordering of the limiting processes is obscure.”

(Benney and Saffman ”Nonlinear Interactions of Random Waves in a Dispersive Medium”

Proc. Royal Soc. A (1966))
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B) Stochastic setting. Following

V. Zakharov, V.L’vov, in Radiophys. Quant. Electronics (1975),

also see in

Cardy, Falcovich, Gawedzki “Non-Equilibrium Stat. Phys. and Turbulence”, CUP 2008.

consider small solutions of NLS equation with small damping and small random force:

(ZL) u̇− i∆u+ ε2ρ i|u|2u = −ν(−∆ + 1)pu+
√
ν 〈rand. force〉, x ∈ TdL,

where ε, ν � 1. Here ν – inverse time-scale of the forced oscillations; ε – amplitude of

small oscillations. Some relation between ν and ε are imposed.

Random Force is∑
bk
d

dt
βk(t)eik·x, bk > 0 and bk → 0 fast, k ∈ ZdL ,

where {βk(t)} – independent standard complex Wiener processes.

Fact: As t→∞, solution of (ZL) converges in distribution to a stationary measure µε,ν of

the equation (which is a “statistical equilibrium of the equation”):

Du(t) ⇀ µε,ν as t→∞.
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Similar to the deterministic case, Zakharov - L’vov do the following:

�Write the equation in Fourier:

u̇k + iλkuk = −ε2ρ i
∑

k1+k2=k3+k

uk1
uk2

ūk3
− ν(λk + 1)puk +

√
ν bkβ̇

k
(t)

The term iρ
∑
uk1

uk2
ūk3

is hamiltonian, with the Hamiltonian

H4 =
ρ

4

∑
k1+k2=k3+k4

uk1
uk2

ūk3
ūk4

.

� They build a small parameter from ε, ν, L and study solutions when

〈small parameter〉 → 0, L→∞. The goal is to calculate corresponding (KZ) spectrum.

Same remark as before has to be made concerning the two limits 〈small parameter〉 → 0

and L→∞: it is unclear in which order they should be taken.
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We choose ε2 = ν – this is within the bounds, usually imposed in physics (cf. [Naz]). It is

illuminating to pass to the slow time τ = νt:

(ZL) uτ − iν−1∆u+ iρ|u|2u = −(−∆ + 1)pu+ 〈rand. force〉′, x ∈ TdL.

This is the equation I will discuss, mostly following my work with Alberto Maiocchi, who is

now a post-doc in Paris.
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We suggest to study the WT limits (at least, some of them) by splitting the limiting process

in two steps:

I) prove that when ν → 0, main characteristics of solutions uν have limits of order one,

described by certain well posed effective equation.

II) Show that main characteristics of solutions for the effective equation have non-trivial

limits of order one, when L→∞ and ρ = ρ(L) is a suitable function of L.

Step I has been done rigorously, and I discuss it in this talk. I stress that the results of

Step I along cannot justify the predictions of WT since the (KZ spectrum) cannot hold when

the period L is fixed and finite.

At the end of my talk I will show that a heuristic argument a-la WT with a suitable choice of

the function ρ(L) allows to justify Step II and leads under the limit L→∞ to a

Kolmogorov-Zakharov type kinetic equation and a (KZ spectrum).

It seems that in physics this is called the Litvak-Hasselman approach.
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2 Averaging for PDEs without resonances

In my works [KP1] SK & A.Piatnitski, JMPA (2008); [K2] SK, GAFA ( 2010);

[K3] SK, Ann. Inst. Fourier - PR, 2013.

I studied the long-time behaviour of solutions for perturbed hamiltonian PDE without strong

resonances, for L = 1. Namely, in [KP1,K2] I considered equations like

u̇− iuxx + i|u|2u = ν(uxx − u) +
√
ν 〈rand. force〉, x ∈ S1,

and in [K3] – equations like

(∗) u̇+i(−∆+V (x))u+iν|u|2u = −ν(−∆+1)pu+
√
ν 〈rand. force〉, x ∈ Td,

where p ∈ N and V (x) is such that there are no resonances in the spectrum of

−∆ + V (x). The key idea was suggested in [K2] – describe the long-time behaviour of

the actions in the perturbed equations, using certain auxiliary Effective Equation. This is a

well posed quasilinear SPDE with a non-local nonlinearity. For eq. (∗) without resonances,

the Effective Equation is linear and does not depend on the Hamiltonian term νi|u|2u.
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3 Averaging for PDEs with resonances

Now the new results.

[KM1] SK & A. Maiocchi, Preprint, arXiv 1311.6793

[KM2] SK & A. Maiocchi, Preprint, arXiv 1311.6794.

We apply the method of [KP1-K3] to the equation of Zakharov-L’vov with ε2 = ν, written

using the slow time τ = νt:

(ZL) uτ − iν−1∆u+ iρ|u|2u = −(−∆ + 1)pu+ 〈rand. force〉′,

We write u(τ, x) =
∑

k∈Zd
L
uk(τ)eik·x, and re-write the equation in Fourier:

d

dτ
uk + iλkν

−1uk = −iρ
∑

k1+k2=k3+k

uk1
uk2

ūk3
− (λk + 1)puk + bk

d

dτ
βk(τ)

where k ∈ ZdL. We wish to control the asymptotic behaviour of the actions 1
2 |uk|

2(τ)

and other characteristics of solutions via suitable effective equation. The Effective Equation

for (ZL) may be derived through the interaction representation, i.e. by transition to the fast
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rotating variables a:

ak(τ) = eiν
−1λkτvk(τ), k ∈ ZdL

(the variation of constant). Note that

(*) |ak(τ)| ≡ |vk(τ)|.

In these variables the (ZL) equation reeds

d

dτ
ak =− (λk + 1)pak + bk e

iν−1λkτ
d

dτ
βk(τ)

− iρ
∑

k1+k2=k3+k

ak1
ak2

āk3
exp

(
−iν−1τ(λk1

+ λk2
− λk3

− λk)
)
.

The terms, constituting the nonlinearity, oscillate fast as ν goes to zero, unless the sum of

the eigenvalues in the second line vanishes. So only the terms for which this sum equals

zero contribute to the limiting dynamics. The processes {β̃
k
(τ), k ∈ ZdL} such that

d
dτ β̃

k
(τ) = eiν

−1λkτ d
dτ β

k(τ) also are stand. independent complex Wiener processes.

Accordingly, the effective equation should be the following damped/driven hamiltonian
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system

d

dτ
vk = −(λk + 1)pvk −Rk(v) + bk

d

dτ
β̃k(τ), k ∈ ZdL ,(Eff.Eq.)

where Rk(v) is the resonant part of the hamiltonian nonlinearity:

Rk(v) = iρ
∑

k1+k2=k3+k
|k1|2+|k2|2=|k3|2+|k|2

vk1
vk2

v̄k3
.

It is easy to see that R(v) is the hamiltonian vector field R = i∇H4
res, whereH4

res is the

resonant part of the HamiltonianH4:

H4
res =

ρ

4

∑
k1+k2=k3+k4

|k1|2+|k2|2=|k3|2+|k4|2

vk1vk2 v̄k3 v̄k4 .

�We have to impose some restrictions on p and d to make (ZL) well posed. E.g.,

p = 1, d ≤ 3 (if p > 1, then d may be bigger than 3).
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Properties ofH4
res and of Eff. Eq.:

Lemma. 1)H4
res has two convex quadratic integrals of motion, H0 =

∑
|vk|2 and

H1 =
∑

(|vk|2|k|2).

2) The hamiltonian vector-field i∇H4
res(v) is Lipschitz in sufficiently smooth Sobolev

spaces.

3) (EffEq) is well posed in sufficiently smooth Sobolev spaces.

• So (Eff. Eq.) is similar to the 2d NSE on a torus!
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(ZL)
d

dτ
uk + iλkν

−1uk = −iρ
∑

k1+k2=k3+k

uk1
uk2

ūk3
− (λk + 1)puk + bk

d

dτ
βk(τ)

(EffEq)
d

dτ
vk = −Rk(v)− (λk + 1)pvk + bk

d

dτ
βk(τ), k ∈ ZdL.

Actions of a solution uν(τ) are

Iνk(τ) = 1
2 |u

ν
k(τ)|2, k ∈ ZdL.

Theorem 1. Let {uνk(τ)} and {vk(τ)} be solutions of (ZL) and (EffEq) with same initial

data. Then, for each k and for 0 ≤ τ ≤ 1,

DIνk(τ) ⇀ D 1
2 |vk(τ)|2 as ν → 0.

Does the effective equation control the angles ϕk = arg uk =: ϕ(uk)? No, instead it

controls the angles of of the a-variables, aνk(τ) = eiν
−1λkτvνk(τ), which fast rotate

compare to the angles ϕk.
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Now consider a stationary measure µν for (ZL). Let uνst(τ) = (uνstk(τ),k ∈ ZdL) be a

corresponding stationary solution, i.e.

D(uνst(τ)) ≡ µν .

Theorem 2. Let Eff. Eq. has a unique stationary measure m0. Then

µν ⇀m0 as ν → 0.

So, if in addition the (ZL) equation has a unique stationary measure, then for ANY its

solution uν(τ) we have

lim
ν→0

lim
τ→∞

D
(
uν(τ)

)
= m0.

But when Eff. Eq. has a unique stat. measure?

Theorem 3. 1) Let p ≥ 1. Then Eff. Eq. has a unique stationary measure if d ≤ 3.

2) Take any d. Then Eff. Eq. has a unique stationary measure if p ≥ pd for a suitable

pd ≥ 0.

16



4 Limit L→∞ for the Eff. Eq. (on the physical level of

accuracy).

Since Eff. Eq. is like 2d NSE on T2, then this is like the limit “period to infinity” for 2d NSE,

which is well known to be complicated. But Eff. Eq. is simpler!

Considre the Eff. Eq. :

d

dτ
vk = −Rk(v)− γkvk + bk

d

dτ
βk(τ), k ∈ ZdL,

Rk(v) = iρ
∑

k1+k2=k3+k
|k1|2+|k2|2=|k3|2+|k|2

vk1
vk2

v̄k3
.(EffEq)

Here γk = (a|k|m + b).

Consider the moments

M
k1,...kn1

kn1+1,...kn1+n2
(τ) = E(vk1 . . . vkn1

v̄kn1+1 . . . v̄kn1+n2
).
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Physical Assumptions:

i) Quasi-Gaussian approximation:

M l1,l2
l3,l4
∼M l1

l1
M l2

l2
(δl3l1 + δl4l1 )(δl3l2 + δl4l2 ) ,

and similar for higher order moments.

ii) Quasi stationary approximation for equations in the chain of moment equations.

Denote

nk = LdMk
k /2 , b̃k = Ld/2bk.

nk - normalised energy of the wave-vector k; see in

[ZLF] Zakharov, Lvov, Falkovich, “Kolmogorov Spectra of Turbulence”, Springer 1992.
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Accepting the two hypotheses above we get the KZ kinetic equation:

Theorem 4. When L→∞ we have

d

dτ
nk = −2γknk + b̃2k

+4
ρ2

L

∫
Γ

dk1dk2dk3
fk(k1,k2,k3)

γk + γk1 + γk2 + γk3 + γk4

× (nk1
nk2

nk3
+ nknk1

nk2
− nknk2

nk3
− nknk1

nk3
).

(KZ)

Here Γ is the resonant surface,

Γ = {(k1,k2,k3) ∈ R3d : k1 + k2 = k + k3, |k1|2 + |k2|2 = |k|2 + |k3|2},

γk = (a|k|m + b), fk(k1,k2,k3) - some bounded smooth function, constructed in

terms of the normal frame to Γ at a point (k1,k2,k3).

Because of the dissipation in the Eff. Eq., our (KZ) equation is “better” then usually the

(KZ) equations are: the divisor in the integrand has no zeroes.
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The KZ spectra.

I recall that γk = a|k|m + b. Looking for solutions of (KZ), where nk depends only on |k|
and arguing a-la Zakharov, we find that the equation has the the following

time-independent homogeneous solutions:

i) if 0 < a� b� 1, then

nk ∼ |k|−d+2/3 , or nk ∼ |k|−d.

ii) if 0 < b� a� 1, then

nk ∼ |k|−
m+3d−2

3 , or nk ∼ |k|−
m+3d

3 .
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Many happy returns, Walter!
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