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The equations The free surface Euler equations

(H1) The fluid is homogeneous and inviscid

(H2) The fluid is incompressible

(H3) The flow is irrotational

(H4) The surface and the bottom can be parametrized as graphs

(H5) The fluid particles do not cross the bottom

(H6) The fluid particles do not cross the surface

(H7) There is no surface tension and the external pressure is constant.

(H8) The fluid is at rest at infinity

(H9) The water depth does not vanish

Definition

Equations (H1)-(H9) are called free surface Euler equations.

 ONE unknown function ζ on a fixed domain Rd

 THREE unknown functions U on a moving, unknown domain Ωt
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The equations The Zakharov/Craig-Sulem formulation

Zakharov 68:

1 Define ψ(t,X ) = Φ(t,X , ζ(t,X )) .

2 ζ and ψ fully determine Φ: indeed, the equation{
∆X ,zΦ = 0 in Ωt ,
Φ|z=ζ

= ψ, ∂nΦ|z=−H0+b
= 0.

has a unique solution Φ.

3 The equations can be put under the canonical Hamiltonian form

∂t

(
ζ
ψ

)
=

(
0 1
−1 0

)
gradζ,ψH

with the Hamiltonian

H =
1

2

∫
Rd

gζ2 +

∫
Ω
|U|2
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The equations The Zakharov/Craig-Sulem formulation

Question

What are the equations on ζ and ψ???

• Equation on ζ. It is given by the kinematic equation

∂tζ −
√

1 + |∇ζ|2∂nΦ|z=ζ
= 0

Craig-Sulem 93:

Definition (Dirichlet-Neumann operator)

G [ζ, b] : ψ 7→ G [ζ, b]ψ =
√

1 + |∇ζ|2 ∂nΦ|z=ζ
.

Remark. One has the exact relation

G [ζ, b]ψ = −∇·(hV ) with h = H0+ζ−b and V =
1

h

∫ ζ

−H0+b
V (X , z)dz
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The equations The Zakharov/Craig-Sulem formulation

• Equation on ψ. We use (H1)” and (H7)”

∂tΦ +
1

2
|∇X ,zΦ|2 + gz = −1

ρ
(P − Patm) AND P|z=ζ

= Patm

w�
∂tΦ|z=ζ

+
1

2
|∇X ,zΦ|2|z=ζ

+ gζ = 0

 The equation on ψ can be written

∂tψ + gζ +
1

2
|∇ψ|2 − (G [ζ, b]ψ +∇ζ · ∇ψ)2

2(1 + |∇ζ|2)
= 0.

The Zakharov-Craig-Sulem equations
∂tζ − G [ζ, b]ψ = 0,

∂tψ + gζ +
1

2
|∇ψ|2 − (G [ζ, b]ψ +∇ζ · ∇ψ)2

2(1 + |∇ζ|2)
= 0.
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Asymptotic expansions Nondimensionalization

Goal

Derive simpler asymptotic models describing the solutions to the water
waves equations in shallow water.

For the sake of simplicity, we consider here a flat bottom (b = 0).

We introduce three characteristic scales
1 The characteristic water depth H0

2 The characteristic horizontal scale L
3 The order of the free surface amplitude a
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Goal

Derive simpler asymptotic models describing the solutions to the water
waves equations in shallow water.

For the sake of simplicity, we consider here a flat bottom (b = 0).

We introduce three characteristic scales
1 The characteristic water depth H0

2 The characteristic horizontal scale L
3 The order of the free surface amplitude a

Two independent dimensionless parameters can be formed from these
three scales. We choose:

a

H0
= ε (amplitude parameter ),

H2
0

L2
= µ (shallowness parameter ).
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Asymptotic expansions Nondimensionalization

We proceed to the simple nondimensionalizations

X ′ =
X

L
, z ′ =

z

H0
, ζ ′ =

ζ

a
, etc.
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Asymptotic expansions Nondimensionalized equations


∂tζ +∇ · (hV ) = 0,

∂t∇ψ +∇ζ +
ε

2
∇|∇ψ|2 − εµ∇(−∇ · (hV ) +∇(εζ) · ∇ψ)2

2(1 + ε2µ|∇ζ|2)
= 0,

where in dimensionless form

h = 1 + εζ and V =
1

h

∫ εζ

−1
V (x , z)dz .

Shallow water asymptotics (µ� 1)

We look for an asymptotic description with respect to µ of ∇ψ in
terms of ζ and V

This is obtained through an asymtotic description of V in the fluid.

This is obtained through an asympotic description of Φ in the fluid,
Φ ∼ Φ0 + µΦ1 + µ2Φ2 + . . .

At first order, we have a columnar motion and therefore
∇ψ = V + O(µ).

All this procedure can be fully justified (cf Walter Craig for KdV ! )
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Asymptotic expansions Nondimensionalized equations

Saint-Venant

{
∂tζ +∇ · (hV ) = 0,

∂tV +∇ζ + εV · ∇V = 0.

where we dropped all O(µ) terms.

Shallow water asymptotics (µ� 1)

We look for an asymptotic description with respect to µ of ∇ψ in
terms of ζ and V

This is obtained through an asymtotic description of V in the fluid.

This is obtained through an asympotic description of Φ in the fluid,
Φ ∼ Φ0 + µΦ1 + µ2Φ2 + . . .

At first order, we have a columnar motion and therefore
∇ψ = V + O(µ).

All this procedure can be fully justified (cf Walter Craig for KdV ! )

David Lannes (DMA, ENS et CNRS) Water Waves with vorticity Toronto, January 10th, 2014 10 / 33



Asymptotic expansions Nondimensionalized equations

Saint-Venant

{
∂tζ +∇ · (hV ) = 0,

∂tV +∇ζ + εV · ∇V = 0.

where we dropped all O(µ) terms.

Shallow water asymptotics (µ� 1)

We look for an asymptotic description with respect to µ of ∇ψ in
terms of ζ and V

This is obtained through an asymtotic description of V in the fluid.

This is obtained through an asympotic description of Φ in the fluid,
Φ ∼ Φ0 + µΦ1 + µ2Φ2 + . . .

At first order, we have a columnar motion and therefore
∇ψ = V + O(µ).

All this procedure can be fully justified (cf Walter Craig for KdV ! )

David Lannes (DMA, ENS et CNRS) Water Waves with vorticity Toronto, January 10th, 2014 10 / 33



Numerical computations 1D simulations

“
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Numerical computations 1D simulations

“
Bonneton, Chazel, L. , Marche, Tissier 2011-2012
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Numerical computations 2D computations

2D configurations can also be handled (D.L. & F. Marche, 2014):

• Tsunami island
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Numerical computations 2D computations

2D configurations can also be handled (D.L. & F. Marche, 2014):
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Numerical computations 2D computations

2D configurations can also be handled (D.L. & F. Marche, 2014):

• Overtopping
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Numerical computations 2D computations
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Water waves with vorticity Basic assumptions

(H1) The fluid is homogeneous and inviscid

(H2) The fluid is incompressible

(H3) /////The/////flow///is//////////////irrotational

(H4) The surface and the bottom can be parametrized as graphs above the
still water level

(H5) The fluid particles do not cross the bottom

(H6) The fluid particles do not cross the surface

(H7) There is no surface tension and the external pressure is constant.

(H8) The fluid is at rest at infinity

(H9) The water depth is always bounded from below by a nonnegative
constant

Refs: Lindblad, Coutand-Shkoller, Shatah-Zeng, Zhang-Zhang,
Masmoudi-Rousset, ...
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Water waves with vorticity Euler’s equations

∂tU + U · ∇X ,zU = −1

ρ
∇X ,zP − gez ,

∇X ,z ·U = 0,

P|z=ζ
= Patm

Irrotational case

We get from curl U = 0 that U = ∇X ,zΦ

We replace Euler’s equation on U by Bernoulli’s equation on Φ

∂tΦ +
1

2
|∇X ,zΦ|2 + gz = −1

ρ
(P − Patm)

We eliminate the pressure by taking the trace on the interface

We reduce the problem to an equation on ζ and
ψ(t,X ) = Φ(t,X , ζ(t, x)).
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Water waves with vorticity Euler’s equations

∂tU + U · ∇X ,zU = −1

ρ
∇X ,zP − gez ,

∇X ,z ·U = 0,

P|z=ζ
= Patm

Rotational case

One has curl U = ω 6= 0 and

∂tω + U · ∇X ,zω = ω · ∇X ,zU.

One cannot work with the Benouilli equation
 How can we use the boundary condition on the pressure P?
One can remark that

(∇X ,zP)|z=ζ
=

(
∇(P|z=ζ

)

0

)
+ N∂zP|z=ζ

= 0 + N∂zP|z=ζ
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Water waves with vorticity New formulation

One has

∂tU + U · ∇X ,zU = −1

ρ
∇X ,zP − gez

and

(∇X ,zP)|z=ζ
= N∂zP|z=ζ

, with N =

(
−∇ζ

1

)
.

 One can eliminate the pressure by
1 Taking the trace of Euler’s equation at the surface
2 Take the vectorial product of the resulting equation with N.

 This leads to an equation on the tangential part of the velocity at the
surface

Notation

With U = (V ,w) = U|z=ζ
, we write

U‖ = V + w∇ζ so that U × N =

(
−U⊥‖

−U⊥‖ · ∇ζ

)
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Water waves with vorticity New formulation{
∂tU + U · ∇X ,zU = −1

ρ
∇X ,zP − gez

}
|z=ζ

× N

ww� ( with some computations)

∂tU‖ + g∇ζ +
1

2
∇|U‖|2 −

1

2
∇
(
(1 + |∇ζ|2)w 2

)
+ ω · NV⊥ = 0.

What does it give in the irrotational case?

In the irrotational case, one has

U‖ = ∇ψ.

How do we generalize to the rotational case?

We decompose U‖ into

U‖ = ∇ψ +∇⊥ψ̃
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Water waves with vorticity New formulation

We have found

∂tU‖ + g∇ζ +
1

2
∇|U‖|2 −

1

2
∇
(
(1 + |∇ζ|2)w 2

)
+ ω · NV⊥ = 0.

and decomposed
U‖ = ∇ψ +∇⊥ψ̃

The question is now to find equations on ψ and ψ̃.

This is done by projecting the equation onto its “gradient” and
“orthogonal gradient” components

This is done by applying div
∆ and div ⊥

∆ to the equation

The “orthogonal gradient” component yields

∂t(ω · N −∇⊥ · U‖) = 0 ,

which is trivially true and does not bring any information
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Water waves with vorticity New formulation

∂tU‖ + g∇ζ +
1

2
∇|U‖|2 −

1

2
∇
(
(1 + |∇ζ|2)w 2

)
+ ω · NV⊥ = 0.

The “orthogonal gradient “component of the equation does not bring
any information

The “gradient” component of the equation is obtained by applying
div

∆ . After remarking that

div

∆
U‖ =

div

∆
(∇ψ +∇⊥ψ̃)

= ψ,

we get

∂tψ + gζ +
1

2
|U‖|2 −

1

2

(
(1 + |∇ζ|2)w 2

)
+
∇
∆
·
(
ω · NV⊥

)
= 0
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Water waves with vorticity New formulation

Irrotational case

(ZCS)


∂tζ − U · N = 0,

∂tψ + gζ +
1

2
|∇ψ|2 − (U · N +∇ζ · ∇ψ)2

2(1 + |∇ζ|2)
= 0

ω = 0.

Moreover, U · N = G [ζ]ψ

⇒ (ZCS) is a closed system of equations in (ζ, ψ).

Rotational case

(ZCS)gen


∂tζ − U · N = 0,

∂tψ + gζ +
1

2
|U‖|2 −

(U · N +∇ζ · U‖)2

2(1 + |∇ζ|2)
=
∇⊥

∆
· (ω · NV )

∂tω + U · ∇X ,zω = ω · ∇X ,zU.

 is this a closed system of equations in (ζ, ψ, ω) ?
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Water waves with vorticity New formulation

(ZCS)gen


∂tζ − U · N = 0,

∂tψ + gζ +
1

2
|U‖|2 −

(U · N +∇ζ · U‖)2

2(1 + |∇ζ|2)
=
∇⊥

∆
· (ω · NV )

∂tω + U · ∇X ,zω = ω · ∇X ,zU.

We want to prove that this is a closed system of equations in (ζ, ψ, ω):

It is enough to prove that U is fully determined by (ζ, ψ, ω)
We recall that by definition of ψ and ψ̃,

U‖ = ∇ψ +∇⊥ψ̃,

and we have already used the fact that ω · N = ∇⊥ · U‖ ; therefore

U‖ = ∇ψ +
∇⊥

∆
ω · N.

We are therefore led to solve
curl U = ω in Ω
div U = 0 in Ω
U‖ = ∇ψ +∇⊥∆−1(ω · N) at the surface
U|z=−H0

· Nb = 0 at the bottom.
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and we have already used the fact that ω · N = ∇⊥ · U‖ ; therefore

U‖ = ∇ψ +
∇⊥

∆
ω · N.

We are therefore led to solve
curl U = ω in Ω
div U = 0 in Ω
U‖ = ∇ψ +∇⊥∆−1(ω · N) at the surface
U|z=−H0

· Nb = 0 at the bottom.
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Water waves with vorticity The div-curl problem
curl U = ω in Ω
div U = 0 in Ω
U‖ = ∇ψ +∇⊥∆−1(ω · N) at the surface
U|z=−H0

· Nb = 0 at the bottom.

Proposition

For all ω ∈ Hb(div0,Ω) and all ψ ∈ Ḣ3/2(Rd),
(1) There is a unique solution U ∈ H1(Ω)d+1 to the div-curl problem, and

‖U‖2 + ‖∇X ,zU‖2 ≤ C (
1

hmin
, |ζ|W 2,∞)

(
‖ω‖2,b + |∇ψ|H1/2

)
.
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div U = 0 in Ω
U‖ = ∇ψ +∇⊥∆−1(ω · N) at the surface
U|z=−H0

· Nb = 0 at the bottom.

Proposition

For all ω ∈ Hb(div0,Ω) and all ψ ∈ Ḣ3/2(Rd),
(2) The solution U can be written U = curl A +∇X ,zΦ with

curl curl A = ω in Ω,
div A = 0 in Ω,

Nb × A|bott
= 0

N · A|surf = 0

(curl A)‖ = ∇⊥∆−1ω · N,
N · curl A|bott

= 0,

[...]
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div U = 0 in Ω
U‖ = ∇ψ +∇⊥∆−1(ω · N) at the surface
U|z=−H0

· Nb = 0 at the bottom.

Proposition

For all ω ∈ Hb(div0,Ω) and all ψ ∈ Ḣ3/2(Rd),
(2) [...] while Φ ∈ Ḣ1(Ω) solves{

∆X ,zΦ = 0 in Ω,
Φ|z=εζ

= ψ, ∂nΦ|z=−1+βb
= 0.
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Water waves with vorticity The div-curl problem

Proof. 
curl curl A = ω

Nb × A|z=−H0
= 0

N · A|z=ζ
= 0(

curl A|z=ζ

)
‖ = ∇⊥ψ̃.

Step 4. Solving ∆ψ̃ = ω · N in Ḣ1/2(Rd).

Use Lax-Milgram in Ḣ1(Rd) to solve the variational formulation of
the equation: for all v ∈ Ḣ1(Rd)∫

Rd

∇v · ∇ψ̃ =

∫
Rd

ω · Nv

=

∫
Rd

ωb · Nv ext
|z=−1+βb

−
∫

Ω
ω · ∇X ,zv ext

≤ (
∣∣|D|−1ωb · Nb

∣∣
H1/2 + ‖ω‖2)︸ ︷︷ ︸

:=‖ω‖2,b

|∇v |2
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Water waves with vorticity Well-posedness

(ZCS)gen


∂tζ − U · N = 0,

∂tψ + gζ +
1

2
|U‖|2 −

(U · N +∇ζ · U‖)2

2(1 + |∇ζ|2)
=
∇⊥

∆
· (ω · NV )

∂tω + U · ∇X ,zω = ω · ∇X ,zU.

Corollary

This is a closed system of equations in (ζ, ψ,ω).

 Is it well posed??? Strategy of the proof:

1 Work with straightened vorticity and velocity: U = U ◦ Σ, ω = ω ◦ Σ
and derive higher order estimates on the div-curl problem

2 Study of the dependence of U = U[ζ](ψ, ω) on its arguments (shape
derivatives etc)

3 Quasilinearization of the equation  role of the “good unknown”

4 A priori estimates

5 Existence proof
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Water waves with vorticity Well-posedness

Quasilinearization

The “good unknown” is natural for the study of free boundary
problems (Alinhac). Here

∂k∂
βψ  U(β)‖ · ek with U(β) = ∂βU − ”∂αζ∂zU”

Differentiating the equations we get

(∂t + V · ∇)∂αζ − ∂kU(β) · N ∼ 0,

(∂t + V · ∇)(U(β)‖ · ek) + a∂αζ ∼ 0,

(∂σt + U · ∇σX ,z)∂βω ∼ 0

with a = g + (∂t + V · ∇)w and ∂α = ∂k∂
β.
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Water waves with vorticity Well-posedness

A priori estimates

(∂t + V · ∇)∂αζ−∂kU(β) · N ∼ 0 ×a∂αζ
(∂t + V · ∇)(U(β)‖ · ek) + a∂αζ ∼ 0 ×∂kU(β) · N

(∂σt + U · ∇σX ,z)∂βω ∼ 0 ×∂βω
∂t(ωb · Nb) +∇ · (ωb · NbVb) = 0 ×|D|−1

For all |α| ≤ N (N ≥ 5), we get

1

2
∂t(a∂

αζ, ∂αζ) +
(
(∂t + V · ∇)(U(β)‖ · ek), ∂kU(β) · N

)︸ ︷︷ ︸
Green+good unknown+vorticity equation

≤ C (EN).

with

EN(ζ, ψ, ω) ∼|ζ|2HN +
∑

0<|α|≤N

|∇ψ(α)|2H−1/2 + ‖ω‖2
HN−1 + |ωb · Nb|H−1/2

0

.

and ψ(α) = ∂αψ − w∂αζ.
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Water waves with vorticity Well-posedness

Existence proof

Several difficulties in implementing an iterative scheme

1 Smoothing of the vertical derivatives in the vorticity equation

∂σt ω + U · ∇σX ,zω = ω · ∇σX ,zU

2 One can solve this equation without boundary conditions on ω
provided that ∂tζ = U · N which is lost in the iterative scheme

3 The div-curl problem is solvable if the vorticity is divergence free: this
is also lost.

Theorem (Angel Castro, D. L. 2014)

The (ZCS)gen equations are locally well posed in the energy space
associated to EN with N ≥ 5.
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Water waves with vorticity Hamiltonian structure

In the irrotational case, we know since Zakharov,

∂t

(
ζ
ψ

)
= Jgradζ,ψH with J =

(
0 1
−1 0

)
and with the Hamiltonian

H =
1

2

∫
Rd

gζ2 +

∫
Ω
|U|2.

Can this be generalized to our new formulation with vorticity?
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ζ
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= Jgradζ,ψH with J =

(
0 1
−1 0

)
and with the Hamiltonian

H =
1

2

∫
Rd

gζ2 +

∫
Ω
|U|2.

Theorem (Angel Castro, D. L. 2014)

Let us define the Fréchet manifold

M = {(ζ, ψ,ω),H0 + ζ > hmin, div ω = 0 in Ωζ , |D|−1ωb · Nb ∈ H∞}.

There exists a mapping J : T ∗M→ TM, antisymmetric for the
T ∗M− TM duality product, and such that the equations can be written

∂t

 ζ
ψ
ω

 = Jζ,ψ,ωgradζ,ψ,ωH
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Water waves with vorticity Hamiltonian structure

In the irrotational case, we know since Zakharov,

∂t

(
ζ
ψ

)
= Jgradζ,ψH with J =

(
0 1
−1 0

)
and with the Hamiltonian

H =
1

2

∫
Rd

gζ2 +

∫
Ω
|U|2.

Corollary

The equations are equivalent to the Hamiltonian equation

∀F ∈ A, Ḟ = {F ,H},

where the Poisson bracket {·, ·} is defined as

{F ,G} =

∫
Rd

δF

δζ

δG

δψ
− δF

δψ

δG

δζ
−
∫

Rd

ωh ·
[δF

δψ

∇⊥

∆

δG

δψ
− δG

δψ

∇⊥

∆

δF

δψ

]
+

∫
Ω

(curl
δF

δω
) · (ω × curl

δG

δω
).
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Water waves with vorticity Shallow water asymptotics

Shallow water asymptotics

1 We work with a dimensionless version of the (ZCS)gen equations
2 We need to handle the singular limit µ→ 0

Theorem

The existence time is uniform with respect to µ.

3 We need to relate ζ, U‖ (instead of ∇ψ), V and ω
4 Due to the vorticity, the flow is no longer columnar at order O(µ).
5 For instance

U‖ = V +
√
µQ with Q =

1

h

∫ ζ

−1

∫ ζ

z ′
ωh

6 (h,V ) satisfy the same equations as in the irrotational case
7 One finds an equation for Q

(∂t + V · ∇)Q + V · ∇Q = 0.
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Water waves with vorticity Shallow water asymptotics{
∂tζ +∇(hV ) = 0,

∂t(hV ) +∇ · (hV ⊗ V ) + h∇ζ = 0

The velocity at the surface if then given by

V|z=εζ
= V +

√
µQ, with (∂t + V · ∇)Q + V · ∇Q = 0.

To do list:

Higher order model (Green-Naghdi)

Horizontal vorticity generation

Vorticity generation by shocks

Numerical implementation and experimental check
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Water waves with vorticity Shallow water asymptotics

Happy birthday Walter!
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