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A. What are the 3-wave equations?

ODEs: u,(7), u,(7), u;(7) are complex-valued

dul N %k *k duz N %k k dl/t3 o %k %

kA dt kA



A. What are the 3-wave equations?

ODEs: u,(7), u,(7), us(7) are complex-valued

dul N %k *k dl/tz N %k % dl/t3 o %k %

kA dt kA

Simplest nonlinear interaction for dispersive waves
without dissipation.

—

k=k,xk, w =w0,*0,

Explosive case — solutions blow up in finite time.



A. What are the 3-wave equations?

ODEs: u,(7), u,(7), u;(7) are complex-valued

dul N %k *k dl/tz N %k k dl/t3 o %k %

kA dt kA

PDEs: u(X,7), u,(X,T), u5(X,7) are complex-valued

. kK . sk
ou +cou =1uu, JoUu+c,du,=1uu,,

. * %
0 Uy +C0 Uy, =1 U U, .



Hamiltonian structure

*

du. .« du, , , .
ODEs: d—;=iukul, d—;=—zukul, {J,k,[} cyclic

. * . I T
J=123, p;=u, q;=u;, H=i(uuus+u; u,u;)

R %k %k
PDEs: aruj + Cjaxuj =1U.lU,,

3

b 1 b * . * 0 ok 3k Id

H=fa 5Ecj(uj(?xz/tj—ujaxuj)+l(uluzu3+ulu2u3) b
L =l




B. Completely integrable

1. Liouville: A Hamiltonian system of ODEs is
completely integrable if there exists a canonical

transformation: {pj, q; H}—> {Pj, Qj, K}, with
K = K(P;, only). Then

dQ, oK dP, 9K _,

dt JP Cdt dQ;

Pi(1) = const. (“action” variables),
O,(1) = O(0) + wT  (“angle” variables).



Completely integrable

2 .Zakharov & Faddeev (1971): A Hamiltonian
set of PDEs in completely integrable under the
same conditions, but now in an infinite-
dimensional phase space.

Solving the PDE by the method of inverse
scattering amounts to discovering a canonical
transformation to action-angle variables



Completely integrable

For both ODEs and PDEs, some Hamiltonian
systems are completely integrable, and some
are not.

Q: How to identify which systems are integrable,
and which are not?

Al: Find the transformation to action/angle
variables (if one exists)

A2: Find the appropriate Lax pair (if one exists)
A3: Test for the Painlevé property




C. Painlevé property

1. Def’n: A system of ODEs (Hamiltonian or not)
has the Painlevé property if in every solution,
every singularity in the complex 7-plane is a pole..

2. Kovalevskaya (1888) used this property (before
Painlevé) to find all known integrable cases of the
eq’ns for the motion of a frictionless top about a
fixed point.

(This suggests relation between the Painlevé
property and integrability.)



C. Painlevé property

3.The Painleve conjecture (1978)

A system of nonlinear PDEs is solvable by the
method of inverse scattering only if every set of
ODEs obtain from the PDE by an exact reduction has
the Painlevé property, perhaps after a change of
variables.

4. Current status: | know of no general proof that
the Painlevé property picks out all integrable
systems. It is known to be a very effective tool.



D. What’s actually new in this talk?

Proposal: A Painlevé-type singularity analysis
can be used to find the (almost) general solution
of an integrable PDE.

If the proposal works out, then this is an
alternative to finding Lax pairs and doing inverse
scattering.

(What follows is a progress report, in two parts,
on implementing this proposal.)
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D. What’s actually new in this talk?

Proposal: A Painlevé-type singularity analysis can
be used to find the (almost) general solution of an
integrable PDE.

Prototype problems: 3-wave ODEs and PDEs

* ODEs: Integrability is well known. The Laurent
series for the solution reproduces the known
results.

 PDEs: The Laurent series for the ODEs generalizes
naturally, and produce the Laurent series for the
PDEs, and its (almost) general solution.



E. Integrability of 3-wave ODEs

ODEs: 3 complex-valued (<—> 6 real equations)

dul o % %k duz o k %k dl/t3 R k0 %k

dt dt dt

We want 3 “action variables”, and 3 “angles”.



E. Integrability of 3-wave ODEs

ODEs: 3 complex-valued (<—> 6 real equations)

dul o %k %k duz o %k %k dl/t3 o %k %k

dt dt dt
We want 3 “action variables”, and 3 “angles”.
Find 2 Manley-Rowe constants:
K, = ‘ul‘z —‘uz‘z =const, K, = ‘ul‘z —‘u3‘2 = const
Hamiltonian:

* 0 ok %

H=1uu,u, +1uu,u, =const



E. Integrability of 3-wave ODEs

du, . « « du, . s« du, . « s
dt dt dt
3 actions:

2 2 2 2
K1=‘u1‘ —‘L@‘ = const, K2=‘u2‘ —‘u3‘ = const
* ok K

H =1 uu,u, +1 u u,u, = const

3 angles:
arg(u,)=0,, arg(u,)=0,, T—=(T-1,)



Painlevé analysis of 3-wave ODEs

%=iu;u;, %=iu;uf, %=iufu;.

dt dt
Hypothesis: Any singularity of these ODEs is a pole
(of order 1). The complete Laurent series of the
solution should provide an expression with 6 free

consta nt_s.

u (T)= i [1 +(1,-T)a, +(1,-T)’ B, + (1, -T) 6, + ]

u,(T) = [1 +(t,-T)a, +(1,-T)’ B, + (1, -T)’ 0, + ]

(To - T)

i0
e’’’

(To - T)

(1) = [1 +(1,—T)a, + (1, -T)’ By + (T, - T) 0, + ]



Painlevé analysis of 3-wave ODEs

dul o %k %k duz . k0 sk du3 R koo
dt dt
eiHJ-

(To - T)

u;(7) = [1 +(7, - 7); + (T, _T)z[)’j +(7, —7)35,- + ] j=1273

 Eqgn’s are autonomous => (t,) is a free constant
* (1% need 6O,+6,+6,=m/2.
=> 3 arbitrary angle variables {7, 6,, 6,}.



Painlevé analysis of 3-wave ODEs

dul o %k %k duz . k0 sk du3 R koo
dt dt
o

(To - T)

u;(7) = [1 +(7, - 7); + (T, _T)z[)’j +(7, —7)35,- + ] j=1273

« Eqgn’s are autonomous => (1,) is a free constant
* (1% need 6O,+6,+6,=m/2.
=> 3 arbitrary angle variables {7, 6,, 6,}.
* (1) need ag=a,=0;=0
* (71" need Re(f;+pB,+;)=0
=> 2 arbitrary action variables {Re(f,), Re(f3;)}



Painlevé analysis of 3-wave ODEs

dul o %k %k duz . k0 sk du3 R koo
dt dt
eiHJ-

(To - T)

1y (T) = [1 +(Ty -, + (T, - T)' B, + (7, - 7)"6, + ] j=123

=> 3 arbitrary angle variables {7, 6,, 6,}.

* (t,~7)°: need Re(f,+pB,+B;)=0
=> 2 arbitrary action variables {Re(f3,), Re(f3;)}

Im(f,) = Im(f,) = Im(p;) = 0
* (o) need Im(6,)=1Im(S,) =Im(d;) = free



Painlevé analysis of 3-wave ODEs

dul o %k %k duz . k0 sk du3 R koo
dt dt
eiQJ-

(To - T)

1y (T) = [1 +(Ty -, + (T, - T)' B, + (7, - 7)"6, + ] j=123

* 3 arbitrary angle variables {7, 6,, 6,}.
3 arbitrary action variables {Re(p,), Re(}3,), ]m(éj)}
* {Re(ﬁZ)a RC(/J’3)} & {K29 K3}9 ]m(éj) a4 H

* At every order beyond (t,—T)}, all coefficients are
determined

* Convergence of series? (see Ruth Martin)



F. Integrability of 3-wave PDEs
O u, +c0.u =iui,, 0U,+C,0u,=iul,,

R * 0k
0 Uy +C0 Uy, =1 U U, .

Zakharov, Manakov, 1973 — found Lax pair

Zakharov, Manakov, 1976 — worked out inverse
scattering on whole line

Kaup, 1976 — inverse scattering on whole line
Others...



F. Integrability of 3-wave PDEs
O u, +c0.u =iui,, 0U,+C,0u,=iul,,

R * 0k
0 Uy +C0 Uy, =1 U U, .

Zakharov, Manakov, 1973 — found Lax pair

Zakharov, Manakov. 1976 — worked out inverse
scattering on whole line

Kaup, 1976 — inverse scattering on whole line
Others...

Our approach — no inverse scattering



G. Painlevé analysis of 3-wave PDEs
O u, +c0.u =iult,, 0_U,+C,0 U, =iul,,
0 Uy +Cy0 Uy =1 Ul .

Procedure: Look for same kind of series, but now allow
all free constants to become free functions of (x) —
except for ().

REYC)

(To = T)
16, (x)

u, (x,7)= [1 +(t,—-7)a,(x)+(T, - 7)’ B(x)+(T, - 7:)351(x) + ]

0, (X,T) = |1+ (7, = ), (X) + (7, =) B,(x) + (T, = T) 6, (x) + .
(To - T)

o030

(To - T)

U, (x,7) = [1 +(T, - T)a,(x)+ (T, —7)° B, (x) + (T, = T) &, (x) + ]



F. Painlevé analysis of 3-wave PDEs

. * 0k
o_u +cou =1ul,

Procedure: Look for same kind of series, but now allow
all free constants to become free functions of (x) —

except for ().

16, (x)
. u(x,7)= [1+...]
Note: If T ,
i0, (x)
then o =——[1+..1],
(| 2
(T()_T)
I CACONACY
L UyUy = T [1+...],
P00
c,0 .U, = [i0/(x) +...].

(7:() - T)



Painlevé analysis of 3-wave PDEs

. * ok
O U +C0 U =1UU;, -
i0;(x)

1y (X,7) = 1+ (7, = T)at, () + (T, = T)* B;(X) + (7, = T)8;(x) + ..

(T() — 77)

* Egn’s are autonomous in T => (1) is a free constant
* (1% need  6,(x)+ O,(x)+ 65(x) =m /2.

=> 2 free functions of {,(x), 6,(x)}

No conditions on 6,(x), except differentiability.

s (t—7) Re(aj(x)) =0, ]m(aj(x)) fixed in terms of G, (x)



Painlevé analysis of 3-wave PDEs

. * ok
O U +C0 U =1UU;, -
i0;(x)

1y (X,7) = 1+ (7, = T)at, () + (T, = T)* B;(X) + (7, = T)8;(x) + ..

(T, - 7)
* (t,— )" Im(B) fixed, j=1,2,3,

Re() = B(x) + Ki(x), with B(x) fixed, and
K (x) + Ky(x) + K5(x) = 0.



Painlevé analysis of 3-wave PDEs

. * ok
O U +C0 U =1UU;, -

i0,(x)

1y (X,7) = 1+ (7, = T)at, () + (T, = T)* B;(X) + (7, = T)8;(x) + ..

(T, —7)
* (t,— )" Im(B) fixed, j=1,2,3,
Re(f5) = B(x) + Ki(x), with B(x) fixed, and
K (x) + Ky(x) + K5(x) = 0.
Choose any two (differentiable) {K,(x), K5(x)}.



Painlevé analysis of 3-wave PDEs

. * ok
O U +C0 U =1UU;, -

i0,(x)

1y (X,7) = 1+ (7, = T)at, () + (T, = T)* B;(X) + (7, = T)8;(x) + ..

(T, —7)
* (t,— )" Im(B) fixed, j=1,2,3,
Re(f5) = B(x) + Ki(x), with B(x) fixed, and
K (x) + Ky(x) + K5(x) = 0.
Choose any two (differentiable) {K(x), K,(x)}.
* (T~ 1)1 Re(d)fixed, j=1,2,3
Im(o)=H(x), j=1,2,3.
Choose (differentiable) H(x).



Painlevé analysis of 3-wave PDEs

. * ok
O U +cCco U =1UU;, -

i0,(x)

1y (X,7) = 1+ (7, = T)at, () + (T, = T)* B;(X) + (7, = T)8;(x) + ..

(T() — T)

Results (so far):

(a) Painlevé analysis provides a (formal) Laurent series
solution of the PDEs, which contains 5 arbitrary,
differentiable functions of x.

(b) See Ruth Martin for convergence of series.

(c) This is one function short of the general solution of the
PDEs, for ANY (sensible) boundary conditions.



Bonne féte, Walter



