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Background

Introduction

0A,
or

+ Cm - VA = ivmALAS.

» From the previous talk, we know that the solutions to the
three-wave equations have a formal series expansion with five
free functions of x.

» We want to show that this expansion is actually meaningful.

» To that end, we look for a radius of convergence for the
Laurent series solution to the three-wave PDEs.

» We use what we know about the convergence of the series
solution of the ODEs in order to find a radius of convergence
for the series solution of the PDEs.
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Background

The three-wave equations

» Let A, = ——2m__ and restrict our attention to one spatial
m vV el P

dimension so that the three-wave equations become

%am . dam
or ™ Ox

k _k
= O'maka[,

with o, = sign(vm).
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Three-wave ODEs

The three-wave ODEs

» Without spatial dependence, we have

dam,

F = O'ma}iaj. (]_)

» There are three associated conserved quantities:

—iH = ajazaz — ajasaz,
Ky = o1|a1]? — o] az/?,

Kz = o1]a1|* — o3]as|?,

where H, K5, and K3 are real constants.
» The ODEs (1) constitute a Hamiltonian system.
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Three-wave ODEs

The three-wave ODEs

dam

* _k
7d7’ = Omadydy,

» We can reduce our system of ODEs to a lower dimensional
Hamiltonian system.

> Write apm(7) = |am(7)|em(7), m=1,2,3,
> Define:

p= 01|31|2 and @ = 1 + 2 + 3.
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Three-wave ODEs

The Hamiltonian system

» The reduced Hamiltonian system is:

H=—2/op(p— K2)(p — Ks) sin ®,
d
ar _ 2\/op(p — Ka)(p — K3) cos ®,

dr

—K)(p— K - K
@ _ [, [ole=K)lp=Ks) | [orlp— Ks)
dr p p— Ko

— K
s fw(ﬂ'z)>sin¢,
p—Ks

with 0 = 10003, p = 01|31|2, S =1+ 2+ ¥3.
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Three-wave ODEs

Solution of the Hamiltonian system

» Solve the Hamiltonian system analytically in the complex
plane to find the solution in terms of the Weierstrass elliptic

function:

Ky + K:
p(T) = U@(T - k;g2ag3) + %1

®(7) = 2arctan {tan (q;O> exp {/OT f(p(t)) dt} }7
where

& = % (K22 + K5 — K2K3)

&= —(K2—2K3)(2K2 K3)(Kz + K3) 4+ H?,

alp— Kz Np—Ks) _ Japlp— Ks) /Jpp Kz
(P) 01\/ 3 Py K23
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Three-wave ODEs

Example solution

|o(7)]

c1=0p=03=1
Ko=1 K3=2

PO = 2.5, and (Do = 73_r

Imfr)

w1 ~ 1.058,

wp ~ 0.529 + 1.082/
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Laurent series expansion for the ODEs

> The explosive case is well understood.

» We can determine the general solution to the ODEs in terms
of a Laurent series:

iOm
am(7) = 7:— - 1+ am(to—7) + Bm(m0 — 7')2
+ Om(10 — 7)3 + O(70 — 7)4] ,
where
am =0,
Im(Bm)zoa Re(51+/82+/33)207
Re (0m) =0, Im (d1) = Im(01) = Im (1) =9
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Three-wave ODEs

Laurent series expansion for the ODEs

@i0m
am(7) = P [1 + Bm(10 — 7')2 +0(70 — 7')3 + O(m0 — 7')4] ,
B1= %(K2+K3),
Ba = 2 (Ks = 2Ka),
B3 = %(Kz —2K3),
icH
5= 171
6

There are six free, real-valued constants in the general solution:
{617 927 70, Kla K27 H}
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The case Kb = K3=0

Let Kr = K3 =0. Then

i H 2
e'vm icH 3 H
am(7) = 2= [1 5 (0T o5

— (10 — 7') + O(m0 — T)g]

3
&,

where { =19 — 7, Ap =1, A3 = —ioH/6, and

(3n — 1)As, + 2A3, = ZA3P Sn_p)y forn>2.
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Three-wave ODEs

Finding the radius of convergence

v

We can determine the radius of convergence using the
Weierstrass solution, since am(7) = /op(1)e’#m(7).

R = min {2 ‘wﬂ ,2 ‘CU2‘}

When K> = K3 = 0, we have

v

v

3
fi7r/3w2 — [r (%)] )
47rg31/6

@ =0 g=H> and wi=e

v

That is,
2[r ()] _ 306
Ar|HIY®  |HM3
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Three-wave ODEs

Finding the radius of convergence

» We can check numerically that this exact value of R agrees
with the radius of convergence provided by the ratio test.

. Iom .
» Since an(7) = eé o0 A3n €37 the ratio test tells us that

the series converges when

A 3(n+1)
n—o0 A3n 63”
or
€l < ( ’A3(n+1) )1/3 L 306 _
nﬁoo A3n ’H|1/3
» Note that this implies lim,_ ’AB'LI =1/R5.
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Three-wave PDEs

Laurent series expansion for the PDEs

> In the explosive case, we look for a general solution to the
PDEs in terms of a Laurent series in 7:

ei@,,,(x)

am(x,7) = {1 + [BRe(x) + iBEM(x)] (70 — T)
+ [C,If,e(x) + iC,Inm(X)] (10 — 7')2

+ (D800 + D8] (0~ ) -+ |

TO— T

» There will be five free functions of x,

{61(x), 62(x), C1*°(x), C3**(x), D™ (x) } .
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Three-wave PDEs

The case where C*¢(x) = C**(x) =0

» We start by restricting our attention to the case where 6, is
constant for m = 1,2,3, and Cf¢(x) = Ci*(x) = 0.

» |In this case, we have

BRe(x) = Ba(x) =0,
Crlnm(x) =0,
D=0, Df"(x) = D§"(x) = D§"(x) = ",
so that
eifm iH(x
am(x77-):TO_T 1+ 6()(7'0—7’)3—|—O(7'0—7')4.
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Three-wave PDEs

The case where C*¢(x) = C**(x) =0

> In this simple case, with £ = 19 — 7, we now have

i0m
e m n
am(x,7) = ¢ ZA,, (x)&",
n=0
where for m=1,2, 3,
MG = 1, AD() = AT() =0, AT(x) = 1O
and
n—3
(n— AT + A + AL = ¢, AT, — ZAg*Af,ip, for n > 4.
p=3
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Three-wave PDEs

The case where C*¢(x) = C**(x) =0

i0
am(x,7) = eg {1+IH( )53—1-24(2Cm+Ck+C€)H( )¢t

—l—120(3c,2,,+c,3+ckCZ+c€2+2cm(ck+cZ))H”§5+...}

» We want to know the radius of convergence for the series
expansion of apm(x, 7).

» For further simplification, we consider a particular family of
functions H(x), for which:

|HO || = k1A

» Example: H(x) = Bsin kx or H(x) = B cos kx.
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The case where C*¢(x) = C**(x) =0

> Let ¢ = max{|ci|, ||, |3}

HHH IHI

Jan(x,7)] < 1 {1+'””|£| + W0 ke + WD chyiep

€]

A A, 3] g6
+ [ 252 36 (K } €l +}
oo [n/3]
|£| 1+ > qnplck)" el

n=3 p=1

where g, , are constants.

» EXAMPLE: The coefficient of |£|° is

IH]]
4320
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1H1>

H 3
(ck)®+ 139 (ck)3+u

4536

Go.1(ck)®+qo2(ck)* +qo3 =



Three-wave ODEs Three-wave PDEs

The case where C*¢(x) = C**(x) =0
> It turns out to be easier to sum down diagonals instead of
rows. The index p in g, then refers to the pth diagonal.

n | (ck)® | (ek)' [(ek)? | (ek)? | (ck)? | (ck)® | (ck)® | (ek)? | (ek)®
3 % 0 0 0 0 0 0 0 0
4 0 ":" 0 0 0 0 0 0 0
5 0 0 SL 0 0 0 0 0 0
12
2
6 | LEL 0 0 LI 0 0 0 0 0
252 36
2
7 0 L 0 0 L= 0 0 0 0
126 144
2
8 o 0 | |E|| 0 0 | |H]| 0 0 0
126 720
3 2
9 |IH]| 0 0 LN 0 0 |IH]| 0 0
4536 189 4320
3 2
10 o LEl] 0 ) AR 0 ) AR 0
1512 378 30 240
3 2
11 0 0 1H|| 0 o 1H|| 0 0 | |H]|
1008 945 241920
12 | 2o=nd ° ° BEITS o ° a2 0 °
2476 656 1008 2835
4 3 2
13 o P AL 0 ) AR 0 ) 2| 1=[] 0
619 164 1344 19845
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The case where C*¢(x) = C**(x) =0

» Rewrite the double sum:

an 7 < g 14303 anplel)™ el | ()

p=1n=3p

» We can prove that

-
An,p = (n _ 3P)! Q3p,ps for n > 3p.

» The constants gsp p are the constants found in the first
column of the table.
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Three-wave PDEs

The case where C*¢(x) = C**(x) =0

The inner sum in (2) has a simple closed form:

o0 s [e'¢) pn_3p s
> dnp(ck)" PN =Y - qapp - (k)P
n=3 =, (n—3p)!

=3p n=op

— (ck pl¢])"
~ ey (LI
n=0 '

= G3pp |£|3p eckplél
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Three-wave PDEs

The case where CR¢(x) = C**(x) =0

The bound (2) becomes

1 o
am(x, 7] < 17 |1+ D aspp €% e

p=1
1 [e.9]
= A Z Gap.p |€|2P eKPIEL
p=0

where we defined qoo = 1.
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Finding the radius of convergence

> Finally, we apply the ratio test to find the radius of

convergence:
3(p+1) gck(p+1
. 93(p+1),p+1 €] (p (Pl
lim 3p ockplE] <1
p—roo G3p,p [€]3P €SP
. q3(p+1 1
— €3 ekl lim Bt
p—roo a3p,p

» However, the numbers g3, , are the coefficients in the Laurent
series for the ODEs. We know the radius of convergence in
that case, so

o fclan) T S ‘AH _ L _ (P
p—>00 q3p,p p—>00 A3p R3 2 [r (%)]3
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Three-wave PDEs

Finding the radius of convergence

» We now know

43(p+1),p-+1
93p,p

_ (am)® - |IH|]

= INLR
221 (3)]

> As a result, the Laurent series expansion for the PDEs
converges when

lim
p—o0

(4m)* - | H]|

3 cklg] .
ST

or

o r et 2 ] 3.6

0 — ~ .
A [HY3 - |[H|Y3
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Three-wave PDEs

Comparison with ODEs

» The radius of convergence for the PDEs is smaller than that
ck|lmg—T|

for the ODEs due to the factor of e™ 3

» ODESs: s
2 (3)] _ 3.06
47r|H|1/3 |H|1/3'

|70 — 7| <
» PDESs:

syl _ 2[r ()] 3.06
4r - [H[V3 T H3

|70 — 7| e
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Three-wave PDEs

PDEs: Another simple case

» An alternative approach is to keep the phases constant, but
set DI™(x) = 0 and pick C{*(x) and CE¢(x) to be nonzero.

» In the ODE case, this is equivalent to setting H = 0, and
keeping K> and K3 nonzero.

> A particularly special case is that corresponding to K3 = 2K5.
Much of the analysis is the similar, though slightly more
complicated, to the previous case. We find

| 2[r )1° ~ 202
ODEs: 70 =71 < opqra L K2 ¥ K2
ck|ltg—| 2 [r (%)]2 ~ 2.62

PDEs: |ro—71|e 2 ~

< .
1024774 /2 K72~ KT
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Conclusion

Results and future problems

> In two cases, we have found that the radius of convergence for
the Laurent series solution to the three-wave PDEs is smaller
than the radius of convergence for the three-wave ODEs by a

known factor.
» The factor depends only on the largest group velocity (in
magnitude) and the rate at which the derivatives of the free

functions grow.
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Conclusion

Results and future problems

> In two cases, we have found that the radius of convergence for
the Laurent series solution to the three-wave PDEs is smaller
than the radius of convergence for the three-wave ODEs by a
known factor.
» The factor depends only on the largest group velocity (in
magnitude) and the rate at which the derivatives of the free
functions grow.

» We would like to determine whether this is true in general, for
more than the two special cases we discussed.

» That is, we want to find a more general radius of convergence
for the case where DI™(x), CR¢(x), and CR¢(x) are all
nonzero.

» We would like to determine what happens when we no longer
force the phases to be constant.
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Conclusion

Results and future problems

» We did not impose any boundary conditions in x when
constructing our Laurent series for the PDEs. However, we
could impose boundary conditions on the free functions of x
in the Laurent series. This should allow our representation of
the solution to be compatible with many types of boundary
conditions.

» Qur approach is an alternative to using Inverse Scattering
mechanics.

» We still do not know how to specify initial data.

» We do not yet know how to replace 7y with an arbitrary
function of x.

» Once we include 1g(x) in our series, we will have a general
solution to the nonlinear PDE within the annulus of
convergence.
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Conclusion

THANK YOU FOR YOUR ATTENTION.
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