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Introduction

∂Am

∂τ
+ cm · ∇Am = iγmA

∗
kA
∗
` .

I From the previous talk, we know that the solutions to the
three-wave equations have a formal series expansion with five
free functions of x .

I We want to show that this expansion is actually meaningful.

I To that end, we look for a radius of convergence for the
Laurent series solution to the three-wave PDEs.

I We use what we know about the convergence of the series
solution of the ODEs in order to find a radius of convergence
for the series solution of the PDEs.
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The three-wave equations

I Let Am = − iam√
|γkγ`|

and restrict our attention to one spatial

dimension so that the three-wave equations become

∂am
∂τ

+ cm
∂am
∂x

= σma
∗
ka
∗
` ,

with σm = sign(γm).
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The three-wave ODEs

I Without spatial dependence, we have

dam
dτ

= σma
∗
ka
∗
` . (1)

I There are three associated conserved quantities:

−iH = a1a2a3 − a∗1a
∗
2a
∗
3,

K2 = σ1|a1|2 − σ2|a2|2,
K3 = σ1|a1|2 − σ3|a3|2,

where H, K2, and K3 are real constants.

I The ODEs (1) constitute a Hamiltonian system.
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The three-wave ODEs

dam
dτ

= σma
∗
ka
∗
` ,

I We can reduce our system of ODEs to a lower dimensional
Hamiltonian system.

I Write am(τ) = |am(τ)|e iϕm(τ), m = 1, 2, 3.

I Define:

ρ = σ1|a1|2 and Φ = ϕ1 + ϕ2 + ϕ3.
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The Hamiltonian system

I The reduced Hamiltonian system is:

H = −2
√
σρ(ρ− K2)(ρ− K3) sin Φ,

dρ

dτ
= 2
√
σρ(ρ− K2)(ρ− K3) cos Φ,

dΦ

dτ
= −

(
σ1

√
σ(ρ− K2)(ρ− K3)

ρ
+ σ2

√
σρ(ρ− K3)

ρ− K2

+ σ3

√
σρ(ρ− K2)

ρ− K3

)
sin Φ,

with σ = σ1σ2σ3, ρ = σ1|a1|2, Φ = ϕ1 + ϕ2 + ϕ3.
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Solution of the Hamiltonian system

I Solve the Hamiltonian system analytically in the complex
plane to find the solution in terms of the Weierstrass elliptic
function:

ρ(τ) = σ ℘(τ − k ; g2, g3) +
K2 + K3

3
,

Φ(τ) = 2 arctan

{
tan

(
Φ0

2

)
exp

[∫ τ

0

f (ρ(t)) dt

]}
,

where

g2 =
4

3

(
K 2

2 + K 2
3 − K2K3

)
,

g3 =
4σ

27
(K2 − 2K3)(2K2 − K3)(K2 + K3) + H2,

f (ρ) = −σ1

√
σ(ρ− K2)(ρ− K3)

ρ
− σ2

√
σρ(ρ− K3)

ρ− K2
− σ3

√
σρ(ρ− K2)

ρ− K3
.
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Example solution

|ρ(τ)|

σ1 = σ2 = σ3 = 1

K2 = 1, K3 = 2

ρ0 = 2.5, and Φ0 = π
3

ω1 ≈ 1.058,

ω2 ≈ 0.529 + 1.082i
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Laurent series expansion for the ODEs

I The explosive case is well understood.
I We can determine the general solution to the ODEs in terms

of a Laurent series:

am(τ) =
e iθm

τ0 − τ

[
1 + αm(τ0 − τ) + βm(τ0 − τ)2

+ δm(τ0 − τ)3 +O(τ0 − τ)4
]
,

where

αm = 0,

Im (βm) = 0, Re (β1 + β2 + β3) = 0,

Re (δm) = 0, Im (δ1) = Im (δ1) = Im (δ1) = δ
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Laurent series expansion for the ODEs

am(τ) =
e iθm

τ0 − τ
[
1 + βm(τ0 − τ)2 + δ(τ0 − τ)3 +O(τ0 − τ)4

]
,

β1 =
σ

6
(K2 + K3) ,

β2 =
σ

6
(K3 − 2K2) ,

β3 =
σ

6
(K2 − 2K3) ,

δ = − iσH

6
.

There are six free, real-valued constants in the general solution:
{θ1, θ2, τ0,K1,K2,H}.
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The case K2 = K3 = 0

Let K2 = K3 = 0. Then

am(τ) =
e iθm

τ0 − τ

[
1− iσH

6
(τ0 − τ)3 +

H2

252
(τ0 − τ)6 +O(τ0 − τ)9

]
=

e iθm

ξ

∞∑
n=0

A3n ξ
3n,

where ξ = τ0 − τ , A0 = 1, A3 = −iσH/6, and

(3n − 1)A3n + 2A∗3n = −
n−1∑
p=1

A∗3pA
∗
3(n−p), for n ≥ 2.
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Finding the radius of convergence

I We can determine the radius of convergence using the
Weierstrass solution, since am(τ) =

√
σρ(τ)e iϕm(τ).

I R = min {2 |ω1| , 2 |ω2|}
I When K2 = K3 = 0, we have

g2 = 0, g3 = H2, and ω1 = e−iπ/3ω2 =

[
Γ
(
1
3

)]3
4πg

1/6
3

.

I That is,

R =
2
[
Γ
(
1
3

)]3
4π |H|1/3

≈ 3.06

|H|1/3
.
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Finding the radius of convergence

I We can check numerically that this exact value of R agrees
with the radius of convergence provided by the ratio test.

I Since am(τ) = e iθm
ξ

∑∞
n=0 A3n ξ

3n, the ratio test tells us that
the series converges when

lim
n→∞

∣∣∣∣∣A3(n+1) ξ
3(n+1)

A3n ξ3n

∣∣∣∣∣ < 1,

or

|ξ| <
(

lim
n→∞

∣∣∣∣A3(n+1)

A3n

∣∣∣∣)−1/3 ≈ 3.06

|H|1/3
= R.

I Note that this implies limn→∞

∣∣∣A3(n+1)

A3n

∣∣∣ = 1/R3.
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Laurent series expansion for the PDEs

I In the explosive case, we look for a general solution to the
PDEs in terms of a Laurent series in τ :

am(x , τ) =
e iθm(x)

τ0 − τ

{
1 +

[
BRe
m (x) + iBIm

m (x)
]

(τ0 − τ)

+
[
CRe
m (x) + iC Im

m (x)
]

(τ0 − τ)2

+
[
DRe
m (x) + iDIm

m (x)
]

(τ0 − τ)3 + · · ·
}
.

I There will be five free functions of x ,{
θ1(x), θ2(x),CRe

1 (x),CRe
2 (x),DIm

1 (x)
}
.
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The case where CRe
1 (x) = CRe

2 (x) = 0

I We start by restricting our attention to the case where θm is
constant for m = 1, 2, 3, and CRe

1 (x) = CRe
2 (x) = 0.

I In this case, we have

BRe
m (x) = BIm

m (x) = 0,

C Im
m (x) = 0,

DRe
m (x) = 0, DIm

1 (x) = DIm
2 (x) = DIm

3 (x) =
H(x)

6
,

so that

am(x , τ) =
e iθm

τ0 − τ

[
1 +

iH(x)

6
(τ0 − τ)3 +O(τ0 − τ)4

]
.
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The case where CRe
1 (x) = CRe

2 (x) = 0

I In this simple case, with ξ = τ0 − τ , we now have

am(x , τ) =
e iθm

ξ

∞∑
n=0

Am
n (x)ξn,

where for m = 1, 2, 3,

Am
0 (x) = 1, Am

1 (x) = Am
2 (x) = 0, Am

3 (x) =
iH(x)

6
,

and

(n − 1)Am
n + Ak∗

n + A`
∗
n = cmA

m′
n−1 −

n−3∑
p=3

Ak∗
p A`

∗
n−p, for n ≥ 4.
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The case where CRe
1 (x) = CRe

2 (x) = 0

am(x , τ) =
e iθm

ξ

{
1 +

iH(x)

6
ξ3 +

i

24
(2cm + ck + c`)H

′(x) ξ4

+
i

120

(
3c2m + c2k + ckc` + c2` + 2cm (ck + c`)

)
H
′′
ξ5 + · · ·

}

I We want to know the radius of convergence for the series
expansion of am(x , τ).

I For further simplification, we consider a particular family of
functions H(x), for which:∥∥∥H(n)(x)

∥∥∥ = kn ‖H‖

I Example: H(x) = B sin kx or H(x) = B cos kx .
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The case where CRe
1 (x) = CRe

2 (x) = 0

I Let c = max {|c1|, |c2|, |c3|}.

|am(x , τ)| ≤
1

|ξ|

{
1 +
‖H‖
6
|ξ|3 + ‖H‖

6
ck|ξ|4 + ‖H‖

12
(ck)2|ξ|5

+

[
‖H‖2

252
+
‖H‖
36

(ck)3
]
|ξ|6 + · · ·

}

=
1

|ξ|

1 + ∞∑
n=3

bn/3c∑
p=1

qn,p(ck)
n−3p|ξ|n

 ,
where qn,p are constants.

I Example: The coefficient of |ξ|9 is:

q9,1(ck)6+q9,2(ck)3+q9,3 =
‖H‖
4320

(ck)6+
‖H‖2

189
(ck)3+

‖H‖3

4536
.
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The case where CRe
1 (x) = CRe

2 (x) = 0
I It turns out to be easier to sum down diagonals instead of

rows. The index p in qn,p then refers to the pth diagonal.
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The case where CRe
1 (x) = CRe

2 (x) = 0

I Rewrite the double sum:

|am(x , τ)| ≤ 1

|ξ|

1 +
∞∑
p=1

∞∑
n=3p

qn,p(ck)n−3p|ξ|n
 . (2)

I We can prove that

qn,p =
pn−3p

(n − 3p)!
· q3p,p, for n ≥ 3p.

I The constants q3p,p are the constants found in the first
column of the table.
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The case where CRe
1 (x) = CRe

2 (x) = 0

The inner sum in (2) has a simple closed form:

∞∑
n=3p

qn,p(ck)n−3p|ξ|n =
∞∑

n=3p

pn−3p

(n − 3p)!
· q3p,p · (ck)n−3p|ξ|n

= q3p,p |ξ|3p
∞∑
n=0

(ck p |ξ|)n

n!

= q3p,p |ξ|3p eckp|ξ|.
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The case where CRe
1 (x) = CRe

2 (x) = 0

The bound (2) becomes

|am(x , τ)| ≤ 1

|ξ|

1 +
∞∑
p=1

q3p,p |ξ|3p eckp|ξ|


=
1

|ξ|

∞∑
p=0

q3p,p |ξ|3p eckp|ξ|,

where we defined q0,0 = 1.
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Finding the radius of convergence

I Finally, we apply the ratio test to find the radius of
convergence:

lim
p→∞

∣∣∣∣∣q3(p+1),p+1 |ξ|3(p+1) eck(p+1)|ξ|

q3p,p |ξ|3p eckp|ξ|

∣∣∣∣∣ < 1

=⇒ |ξ|3 eck|ξ| · lim
p→∞

∣∣∣∣q3(p+1),p+1

q3p,p

∣∣∣∣ < 1.

I However, the numbers q3p,p are the coefficients in the Laurent
series for the ODEs. We know the radius of convergence in
that case, so

lim
p→∞

∣∣∣∣q3(p+1),p+1

q3p,p

∣∣∣∣ = lim
p→∞

∣∣∣∣A3(p+1)

A3p

∣∣∣∣ =
1

R3
=

(4π)3 |H|1/3

2
[
Γ
(
1
3

)]3 .
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Finding the radius of convergence

I We now know

lim
p→∞

∣∣∣∣q3(p+1),p+1

q3p,p

∣∣∣∣ =
(4π)3 · ‖H‖
23
[
Γ
(
1
3

)]9 .
I As a result, the Laurent series expansion for the PDEs

converges when

|ξ|3 eck|ξ| · (4π)3 · ‖H‖
23
[
Γ
(
1
3

)]9 < 1,

or

|τ0 − τ | e
ck|τ0−τ |

3 <
2
[
Γ
(
1
3

)]3
4π · ‖H‖1/3

≈ 3.06

‖H‖1/3
.
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Comparison with ODEs

I The radius of convergence for the PDEs is smaller than that

for the ODEs due to the factor of e
ck|τ0−τ |

3 .

I ODEs:

|τ0 − τ | <
2
[
Γ
(
1
3

)]3
4π |H|1/3

≈ 3.06

|H|1/3
.

I PDEs:

|τ0 − τ | e
ck|τ0−τ|

3 <
2
[
Γ
(
1
3

)]3
4π · ‖H‖1/3

≈ 3.06

‖H‖1/3
.
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PDEs: Another simple case

I An alternative approach is to keep the phases constant, but
set DIm

1 (x) = 0 and pick CRe
1 (x) and CRe

2 (x) to be nonzero.

I In the ODE case, this is equivalent to setting H = 0, and
keeping K2 and K3 nonzero.

I A particularly special case is that corresponding to K3 = 2K2.
Much of the analysis is the similar, though slightly more
complicated, to the previous case. We find

ODEs: |τ0 − τ | <
2
[
Γ
(
1
4

)]2
10241/4 · π1/2 · ‖K‖1/2

≈ 2.62

‖K‖1/2
,

PDEs: |τ0 − τ | e
ck|τ0−τ |

2 <
2
[
Γ
(
1
4

)]2
10241/4 · π1/2 · ‖K‖1/2

≈ 2.62

‖K‖1/2
.

Three-wave resonant interactions: Part 2



Background Three-wave ODEs Three-wave PDEs Conclusion

Results and future problems

I In two cases, we have found that the radius of convergence for
the Laurent series solution to the three-wave PDEs is smaller
than the radius of convergence for the three-wave ODEs by a
known factor.

I The factor depends only on the largest group velocity (in
magnitude) and the rate at which the derivatives of the free
functions grow.

I We would like to determine whether this is true in general, for
more than the two special cases we discussed.

I That is, we want to find a more general radius of convergence
for the case where DIm

1 (x), CRe
1 (x), and CRe

2 (x) are all
nonzero.

I We would like to determine what happens when we no longer
force the phases to be constant.
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Results and future problems

I In two cases, we have found that the radius of convergence for
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functions grow.

I We would like to determine whether this is true in general, for
more than the two special cases we discussed.

I That is, we want to find a more general radius of convergence
for the case where DIm

1 (x), CRe
1 (x), and CRe

2 (x) are all
nonzero.

I We would like to determine what happens when we no longer
force the phases to be constant.
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Results and future problems

I We did not impose any boundary conditions in x when
constructing our Laurent series for the PDEs. However, we
could impose boundary conditions on the free functions of x
in the Laurent series. This should allow our representation of
the solution to be compatible with many types of boundary
conditions.

I Our approach is an alternative to using Inverse Scattering
mechanics.

I We still do not know how to specify initial data.

I We do not yet know how to replace τ0 with an arbitrary
function of x .

I Once we include τ0(x) in our series, we will have a general
solution to the nonlinear PDE within the annulus of
convergence.
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Thank you for your attention.
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