
Layered Media Scattering: Fokas Integral Equations
and Boundary Perturbation Methods

David P. Nicholls

Department of Mathematics, Statistics,
and Computer Science

University of Illinois at Chicago

Hamiltonian PDEs: W. Craig’s 60th (Fields)

David P. Nicholls (UIC) Layered Media: FIE & BPM Fields (January 2014) 1 / 56



Brown University Graduation Procession (1998)

David P. Nicholls (UIC) Layered Media: FIE & BPM Fields (January 2014) 2 / 56



IMACS Waves Conference (Athens, GA, 1999)

David P. Nicholls (UIC) Layered Media: FIE & BPM Fields (January 2014) 3 / 56



Collaborators and References

Collaborator on this project:
David Ambrose (Drexel)

Thanks to:
NSF (DMS–1115333)
DOE (DE–SC0001549)

References:
Ablowitz, Fokas, & Musslimani, “On a new non-local formulation of
water waves,” JFM, 562 (2006).
Fokas, “A unified approach to boundary value problems,” (2008).
Spence & Fokas, “A new transform method I & II,” PRSL (A), 466
(2010).
Deconinck & Oliveras, “The instability of periodic surface gravity
waves,” JFM, 675 (2011).

David P. Nicholls (UIC) Layered Media: FIE & BPM Fields (January 2014) 4 / 56



Introduction

Layered Media Scattering

The interaction of acoustic or electromagnetic waves with periodic
structures plays an important role in many scientific problems,
e.g.,

1 Seismic imaging.
2 Underwater acoustics,
3 Plasmonic nanostructures for biosensing,
4 Plasmonic solar cells.
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Introduction

Seismic Imaging
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Introduction

Underwater Acoustics
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Introduction

Plasmonic Nanostructures for Biosensing
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Introduction

Plasmonic Solar Cells
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Introduction

Numerical Simulation

The ability to robustly simulate scattered fields with high accuracy
is of fundamental importance.
Here we focus upon

1 the high–order numerical simulation
2 of solutions of Helmholtz equations
3 coupled across irregular (non–trivial) interfaces.

Based upon a new surface formulation, we present a novel
Integral Equation Method inspired by recent developments of
Fokas and collaborators.
Further, we extend this method using a Boundary Perturbation
Method to provide an accelerated approach.
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Introduction

Numerical Methods: Volumetric and Surface

Many numerical algorithms have been devised for the simulation
of these problems, for instance (in the geoscience literature):

1 Finite Differences (Pratt, 1990),
2 Finite Elements (Zienkiewicz, 1977),
3 Spectral Elements (Komatitsch, 2002).

These methods suffer from the requirement that they discretize
the full volume of the problem domain which results in both:

1 A prohibitive number of degrees of freedom,
2 The difficult question of appropriately specifying a far–field

boundary condition explicitly.

Surface methods are an appealing alternative and those based
upon Boundary Integrals (BIM) or Boundary Elements (BEM) are
very popular (e.g., Sanchez–Sesma, 1989).

David P. Nicholls (UIC) Layered Media: FIE & BPM Fields (January 2014) 11 / 56



Introduction

Prototype Problem: Helmholtz Equation

To illustrate the issues, consider the prototype problem: Solve the
Helmholtz equation subject to Dirichlet boundary conditions

∆v + k2v = 0, y > g(x),

v(x ,g(x)) = ξ(x), UPC {v} = 0,

and produce the (exterior) Neumann data

ν(x) = [−∂yu +∇xg · ∇xu]y=g(x) .

This mapping
L(g) : ξ → ν,

is the Dirichlet–Neumann Operator (DNO) which is of central
importance in many fields, including water waves, acoustics,
electromagnetics, and elasticity.
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Introduction

Maue’s Method

A standard BIM in acoustics, Maue’s Method, relates the surface
normal derivative, ν(x), to (essentially) the Dirichlet data, ψ

ν(x)−
∫ ∞
−∞

K (x , x ′)ν(x ′) dx ′ = ψ(x)

where
K (x , x ′) = (iπk/2)ρ(x , x ′)H(1)

1 (kρ(x , x ′))ζ(x , x ′),

and

ρ(x , x ′) =
√

(x − x ′)2 + (g(x)− g(x ′))2

ζ(x , x ′) =
g(x)− g(x ′)− (∂xg(x))(x − x ′)

(x − x ′)2 + (g(x)− g(x ′))2 .
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Introduction

Maue’s Method: Periodic Gratings

If g is d–periodic we can rewrite this as

ν(x)−
∫ d

0
Kper (x , x ′)ν(x ′) dx ′ = ψ(x)

where

Kper (x , x ′) =
∞∑

m=−∞
K (x , x ′ + md).

The convergence of this series is extremely slow and must be
accelerated, e.g., by one of:

1 the Spectral Representation,
2 the Kummer Transformation,
3 the Lattice Sum Method,
4 the Ewald Transformation,
5 an Integral Representation.

See Kurkcu & Reitich (JCP, 228 (2009)) for a nice survey.
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Introduction

Surface Methods

BIM/BEM require only discretization of the layer interfaces.
Due to the choice of the Green’s function, they satisfy the far–field
boundary condition exactly.
While these methods can deliver high–accuracy simulations with
greatly reduced operation counts, there are several difficulties:

1 Devising and implementing quadrature rules which respect the
singularities in the Green’s function,

2 Preconditioned iterative methods (accelerated, e.g., by Fast
Multipoles) for the dense linear systems which arise.

Later in the talk we will discuss Boundary Perturbation Methods
(BPM) which which avoid these complications, e.g.,

1 Field Expansions: Bruno & Reitich (1993);
2 Operator Expansions: Milder (1991), Craig & Sulem (1993);
3 Transformed Field Expansions: DPN & Reitich (1999).

David P. Nicholls (UIC) Layered Media: FIE & BPM Fields (January 2014) 15 / 56



Fokas Integral Equations

The Method of Fokas

We utilize Fokas’ approach to discover (Fokas) Integral Equations
(FIE) satisfied by the Dirichlet–Neumann Operator (DNO) and its
corresponding Dirichlet data.
These formulas do not involve the fundamental solution, but rather
smooth, “conjugated,” solutions of the periodic Helmholtz problem.
This means simple quadrature rules (e.g., Nyström’s Method) may
be utilized.
Further, periodization is unnecessary.
Importantly, due to a clever alternative to the standard Green’s
Identity, the derivative of the interface never appears.
Thus, configurations of rather low smoothness can be
accommodated in comparison with standard approaches.
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Fokas Integral Equations

Key to Deriving FIE: A Divergence Lemma

Lemma (Fokas) If

Q(k) := ∂yφ
(

∆ψ + k2ψ
)

+
(

∆φ+ k2φ
)
∂yψ,

then

Q(k) = divx [∂yφ(∇xψ) +∇xφ(∂yψ)]

+ ∂y

[
∂yφ(∂yψ)−∇xφ · (∇xψ) + k2φ ψ

]
= divx

[
F (x)

]
+ ∂y

[
F (y) + F (k)

]
,

where

F (x) := ∂yφ(∇xψ) +∇xφ(∂yψ), F (y) := ∂yφ(∂yψ)−∇xφ · (∇xψ),

F (k) := k2φ ψ.
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Fokas Integral Equations

Fokas’ Integral Relation

Define the domain

Ω :=
{

¯̀+ `(x) < y < ū + u(x)
}
,

Provided that φ and ψ solve the Helmholtz equation we have
Q(k) = 0.
If φ is α–quasiperiodic and ψ is (−α)–quasiperiodic then the
Divergence Theorem tells us

0 =

∫
Ω

Q(k) dV =

∫
∂Ω

F · n̂ dS

=

∫ d

0

(
F (x) · ∇x`− F (y) − F (k)

)
y=¯̀+`(x)

dx

+

∫ d

0

(
F (x) · (−∇xu) + F (y) + F (k)

)
y=ū+u(x)

dx ,

since the terms F (x), F (y), and F (k) are periodic.
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Fokas Integral Equations

Surface Traces and Derivatives

If we define the surface traces

ξ(x) := φ(x , ¯̀+ `(x)), ζ(x) := φ(x , ū + u(x)),

then tangential derivatives are given by

∇xξ(x) := [∇xφ+ (∇x`)∂yφ]y=¯̀+`(x) ,

∇xζ(x) := [∇xφ+ (∇xu)∂yφ]y=ū+u(x) .

Recall, the definitions of the DNOs give the normal derivatives

L(x) := [−∂yφ+∇x` · ∇xφ]y=¯̀+`(x) ,

U(x) := [∂yφ−∇xu · ∇xφ]y=ū+u(x) ,

David P. Nicholls (UIC) Layered Media: FIE & BPM Fields (January 2014) 19 / 56



Fokas Integral Equations

Fokas’ Relation

In terms of these, Fokas’ relation becomes∫ d

0
(∂yψ)y=ū+u(x)U dx +

∫ d

0
(∂yψ)y=¯̀+`(x)L dx

=

∫ d

0
(∇xψ)y=ū+u(x) · ∇xζ dx −

∫ d

0
(∇xψ)y=¯̀+`(x) · ∇xξ dx

−
∫ d

0
k2(ψ)y=ū+u(x)ζ dx +

∫ d

0
k2(ψ)y=¯̀+`(x)ξ dx .

There are three terms at the top and three at the bottom.
We will choose the test function ψ very carefully, but notice that
derivatives are not applied to the boundary shapes, u and `.
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Fokas Integral Equations

The Top Layer

We give the details of the Fokas Integral Equation (FIE) relating
the DNO, L, and its Dirichlet data, ξ, in the top layer.
Analogous derivations can be made for the bottom and middle
layers.
Consider upward propagating, α–quasiperiodic solutions of

∆φ+ k2φ = 0 ¯̀+ `(x) < y < ū
φ = ξ y = ¯̀+ `(x).
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Fokas Integral Equations

The Rayleigh Expansion

The Rayleigh Expansion: For y > ū, upward propagating,
α–quasiperiodic solutions of Helmholtz equation can be written

φ(x , y) =
∞∑

q=−∞
ζ̂qeiαq ·x+iβq(y−ū),

where

αq :=

(
α1 + 2πq1/d1
α2 + 2πq2/d2

)
, βq :=


√

k2 − |αq|2 q ∈ U
i
√
|αq|2 − k2 q 6∈ U

,

and the propagating modes are

U :=
{

q | |αq|2 < k2
}
.
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Fokas Integral Equations

A Test Function

Evaluating the Rayleigh Expansion at y = ū gives
ζ(x) =

∑∞
q=−∞ ζ̂qeiαq ·x , so we can compute the DNO at y = ū:

U = ∂yφ(x , ū) =
∞∑

q=−∞
(iβq)ζ̂qeiαq ·x = (iβD)ζ.

Consider the (−α)–quasiperiodic “test function”

ψ(x , y) = e−iαq ·x+iβq(y−¯̀),

and the upper boundary terms (1st, 3rd, 5th terms in Fokas’ Relation)

R(x) := (∂yψ)y=ūU − (∇xψ)y=ū · ∇xζ + k2(ψ)y=ūζ.

Using the fact that |αp|2 + β2
p = k2 we can show

∫ d
0 R(x) dx = 0.
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Fokas Integral Equations

Integral Equation for the Upper Layer DNO

Therefore, we can write∫ d

0
(∂yψ)y=¯̀+`(x)L dx = −

∫ d

0
(∇xψ)y=¯̀+`(x) · ∇xξ dx

+

∫ d

0
k2(ψ)y=¯̀+`(x)ξ dx .

Further, with ψ defined above∫ d

0
(iβp)eiβp`(x)e−iαpxL dx =

∫ d

0
(iαp)eiβp`(x)e−iαpx · ∇xξ dx

+

∫ d

0
k2eiβp`(x)e−iαpxξ dx .
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Fokas Integral Equations

Integral Formula for Upper Layer DNO

We write this integral relation as Âp [L] = R̂p [ξ] , where

Âp [L] =

∫ d

0
(iβp)eiβp`e−iαp·xL(x) dx ,

R̂p [ξ] =

∫ d

0
eiβp`e−iαp·x

{
iαp

iβp
· ∇x +

k2

iβp

}
ξ(x) dx .

We recognize the inverse Fourier transform in these formulas and
solve, instead, the equation A [L] = R [ξ] , where

A =
1
|d |

∞∑
p=−∞

Âpeiαp x̃ , R =
1
|d |

∞∑
p=−∞

R̂peiαp x̃ .

Numerical Method: We apply Nyström’s Method to the equation
A[L] = R[ξ].
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Governing Equations

Governing Equations: Multiply–Layered Material

y = ḡ (m)+ g (m)

Consider a multiply–layered
material with M many interfaces at

y = ḡ(m) + g(m)(x1, x2)

= ḡ(m) + g(m)(x),

1 ≤ m ≤ M,

separating (M + 1)–many layers,
with (upward pointing) normals

N(m) := (−∇xg(m),1)T .
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Governing Equations

Plane–Wave Incidence

y = ḡ (m)+ g (m)

v i = exp(iαx − iβy)

In each layer we assume a
constant speed c(m) and that the
structure is insonified (illuminated)
from above by plane–wave
acoustic incidence

ui(x , y , t) = e−iωtei(α·x−βy)

=: e−iωtv i(x , y).
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Governing Equations

Time–Harmonic Scattering

y = ḡ (m)+ g (m)

v i = exp(iαx − iβy)

k (m) = ω/c(m)

In each layer the quantity
k (m) = ω/c(m) specifies both:

The material properties, and
the frequency of radiation.

These are common to both the
incident and scattered acoustic
fields in the structure.
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Governing Equations

Helmholtz Equations

y = ḡ (m)+ g (m)

v i = exp(iαx − iβy)

k (m) = ω/c(m)

∆v (m)+ (k (m))2v(m) = 0

The reduced scattered acoustic
fields satisfy Helmholtz equations
in each layer:

∆v (m) + (k (m))2v (m) = 0,

ḡ(m+1)+g(m+1) < y < ḡ(m)+g(m).
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Governing Equations

Boundary Conditions

It is well–known (Petit, 1980) that the problem can be restated as
a time–harmonic one of time–independent reduced scattered
fields, v (m)(x , y), which, in each layer, are quasiperiodic

v (m)(x + d , y) = ei(α·d)v (m)(x , y).

Boundary conditions give the coupling, for 1 ≤ m ≤ M,

v (m−1) − v (m) = ζ(m) y = ḡ(m) + g(m)(x),

∂N(m)

[
v (m−1) − v (m)

]
= ψ(m), y = ḡ(m) + g(m)(x).

In the case of insonification from above

ζ(1) = −v i
∣∣∣
y=ḡ(1)+g(1)(x)

, ψ(1) = −∂N(1)v i
∣∣∣
y=ḡ(1)+g(1)(x)

,

ζ(m) ≡ ψ(m) ≡ 0, 2 ≤ m ≤ M.
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Boundary Formulation

Boundary Formulation: Dirichlet Traces

y = ḡ (m)+ g (m)

V (m−1),l := v (m−1)| ḡ (m )+g(m )

V (m),u := v (m)| ḡ (m )+g (m )

BC : V (m−1),l− V (m),u= ζ (m)

We define the Lower Dirichlet trace
(1 ≤ m ≤ M):

V (m−1),l := v (m−1)
∣∣∣
ḡ(m)+g(m)(x)

,

and the Upper Dirichlet trace
(1 ≤ m ≤ M):

V (m),u := v (m)
∣∣∣
ḡ(m)+g(m)(x)

.

The Dirichlet boundary conditions are:

V (m−1),l − V (m),u = ζ(m), 1 ≤ m ≤ M.
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Boundary Formulation

Boundary Formulation: Neumann Traces

y = ḡ (m)+ g (m)

Ṽ (m−1),l:= −∂Nv (m−1)| ḡ (m )+g (m )

Ṽ (m),u := ∂Nv (m)| ḡ (m )+g(m )

BC : −Ṽ (m−1),l− Ṽ (m),u= Ψ(m)

We define the Lower Neumann trace
(1 ≤ m ≤ M):

Ṽ (m−1),l := −∂N(m)v (m−1)
∣∣∣
y=ḡ(m)+g(m)(x)

,

and the Upper Neumann trace
(1 ≤ m ≤ M):

Ṽ (m),u := ∂N(m)v (m)
∣∣∣
y=ḡ(m)+g(m)(x)

.

The Neumann boundary conditions are:

−Ṽ (m−1),l − Ṽ (m),u = ψ(m), 1 ≤ m ≤ M.
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Boundary Formulation

Boundary Formulation: DNOs

We now have (2M) equations for (4M) unknown functions.
This allows us to eliminate the upper traces {Ṽ (m),u,V (m),u} in
favor of the lower ones {Ṽ (m),l ,V (m),l} by

V (m),u = V (m−1),l − ζ(m) 1 ≤ m ≤ M

Ṽ (m),u = −Ṽ (m−1),l − ψ(m) 1 ≤ m ≤ M.

We can generate (2M) many more equations by defining the
Dirichlet–Neumann Operators (DNOs)

G[V (0),l ] := Ṽ (0),l

H(m)[V (m),u,V (m),l ] =

(
Huu(m) Hul(m)
H lu(m) H ll(m)

)[(
V (m),u

V (m),l

)]
:=

(
Ṽ (m),u

Ṽ (m),l

)
J[V (M),u] := Ṽ (M),u,

which relate the Dirichlet quantities, {V (m),u,V (m),l}, to the
Neumann traces, {Ṽ (m),u, Ṽ (m),l}.
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Boundary Formulation

Boundary Formulation: Integral Operators

In a moment we will derive integral operators A and R which relate
the Dirichlet data, V (m),l , to the Neumann data, Ṽ (m),l .
More specifically, for the top layer

A(0)Ṽ (0),l − R(0)V (0),l = 0,

for the middle layer(
Auu(m) Aul(m)
Alu(m) All(m)

)(
Ṽ (m),u

Ṽ (m),l

)
−
(

Ruu(m) Rul(m)
R lu(m) R ll(m)

)(
V (m),u

V (m),l

)
=

(
0
0

)
1 ≤ m ≤ M − 1,

and for the bottom layer

A(M)Ṽ (M),u − R(M)V (M),u = 0.
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Boundary Formulation

Boundary Formulation: Linear System

Eliminating the upper traces, we write

A(0)Ṽ (0),l − R(0)V (0),l = 0,

and(
Auu(m) Aul(m)
Alu(m) All(m)

)(
−Ṽ (m−1),l − ψ(m)

Ṽ (m),l

)
−
(

Ruu(m) Rul(m)
R lu(m) R ll(m)

)(
V (m−1),l − ζ(m)

V (m),l

)
=

(
0
0

)
1 ≤ m ≤ M − 1,

and
A(M)[−Ṽ (M−1),l − ψ(M)]− R(M)[V (M−1),l − ζ(M)] = 0.

Simplifying, this can be written as

MV(l) = Q.
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Boundary Formulation

Boundary Formulation: Operator, Data, and Unknown

In this linear system, MV(l) = Q, we have

M :=


A(0) −R(0) 0 · · · 0
−Auu(1) −Ruu(1) Aul(1) −Rul(1) · · · 0
−Alu(1) −R lu(1) All(1) −R ll(1) · · · 0

...
...

0 · · · 0 −A(M) −R(M)

 ,

and

V(l) :=


Ṽ (0),l

V (0),l

...
Ṽ (M−1),l

V (M−1),l

 , Q :=


0

Auu(1)ψ(1) − Ruu(1)ζ(1)

Alu(1)ψ(1) − R lu(1)ζ(1)

...
A(M)ψ(M) − R(M)ζ(M)

 .
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Numerical Results

Numerical Results

As we mentioned above, our numerical procedure is to apply
Nyström’s Method to the linear system MV(l) = Q.
We conduct a series of tests based upon an exact solution
(possible if we ease the restriction that the data come from
plane–wave incidence).
For this we consider the functions

v (m)
r = A(m)eiαr ·x+iβ(m)

r y + B(m)eiαr ·x−iβ(m)
r y ,

with A(M) = B(0) = 0.
These are outgoing, α–quasiperiodic solutions of the Helmholtz
equation, however, these do not correspond to plane–wave
incidence.
We measure the maximum (relative) difference between the
computed and exact values of the lower Dirichlet and Neumann
traces.
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Numerical Results

Convergence Studies: Two–Dimensional Profiles

In two dimensions we consider: A smooth profile

fs(x1) = cos(x1),

a rough (C4 but not C5) profile

fr (x1) = (2× 10−4)
{

x4
1 (2π − x1)4 − (128π8)/315

}
,

and a Lipschitz profile

fL(x) =

{
−(2/π)x + 1, 0 ≤ x ≤ π
(2/π)x − 3, π ≤ x ≤ 2π

.

Remark: We point out that all three profiles have zero mean,
approximate amplitude 2, and maximum slope of roughly 1.
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Numerical Results

Convergence Studies: Three–Dimensional Profiles

In three dimensions we consider: A smooth profile

f̃s(x1, x2) = cos(x1 + x2),

a rough (C2 but not C3) profile

f̃r (x1, x2) = (2/9× 10−3)
{

x2
1 (2π − x1)2x2

2 (2π − x2)2 − (64π8)/225
}
,

and a Lipschitz profile

f̃L(x1, x2) =
1
3

+


−1 + (2/π)x1, x1 ≤ x2 ≤ 2π − x1

3− (2/π)x2, x2 > x1, x2 > 2π − x1

3− (2/π)x1, 2π − x1 < x2 < x1

−1 + (2/π)x2, x2 < x1, x2 < 2π − x1

.

Remark: We point out that all three profiles have zero mean,
approximate amplitude 2, and maximum slope of roughly 1.
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Numerical Results

Smooth, Smooth Configuration (2D)
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Relative error versus number of gridpoints
for the two–dimensional smooth,
smooth configuration:

β(0) = 1.1, β(1) = 2.2, β(2) = 3.3,

α = 0.1, g(1) = εfs, g(2) = εfs,
d = 2π, ε = 0.01.
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Numerical Results

Rough, Lipschitz Configuration (2D)
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Relative error versus number of gridpoints
for the two–dimensional rough,
Lipschitz configuration:

β(0) = 1.1, β(1) = 2.2, β(2) = 3.3,

α = 0.1, g(1) = εfr , g(2) = εfL,
d = 2π, ε = 0.03.
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Numerical Results

Smooth, Rough, Lipschitz, Rough, Smooth
Configuration (2D)
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Relative error versus number of gridpoints
for the two–dimensional smooth, rough,
Lipschitz, rough, smooth configuration:

β(m) = 1.1 + m, 0 ≤ m ≤ 5,

α = 0.1, g(1) = εfs, g(2) = εfr ,

g(3) = εfL, g(4) = εfr , g(5) = εfs,
d = 2π, ε = 0.02.
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Numerical Results

21 Smooth Layer Configuration (2D)
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Relative error versus number of gridpoints
for the two–dimensional, 21 layer
structure with smooth interfaces:

β(m) = (m + 1)/10, 0 ≤ m ≤ 20,

α = 0.1, g(m) = εfs, 1 ≤ m ≤ 20,
d = 2π, ε = 0.02.
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Numerical Results

Smooth, Smooth Configuration (3D)
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Relative error versus number of gridpoints
for the three–dimensional
smooth–smooth configuration:

β(0) = 1.1, β(1) = 2.2, β(2) = 3.3,
α1 = 0.1, α2 = 0.2,

g(1) = εf̃s, g(2) = εf̃s,
d1 = d2 = 2π, ε = 0.1.
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Numerical Results

Rough, Lipschitz Configuration (3D)
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Relative error versus number of gridpoints
for the three–dimensional
rough–Lipschitz configuration:

β(0) = 1.1, β(1) = 2.2, β(2) = 3.3,
α1 = 0.1, α2 = 0.2,

g(1) = εf̃r , g(2) = εf̃L,
d1 = d2 = 2π, ε = 0.1.
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Boundary Perturbation Methods

A Boundary Perturbation Approach

This FIE approach is not only flexible and simple to implement, but
also highly accurate and robust.
However, the formation and inversion of the linear operator
(matrix) M can be quite time–consuming.
Additionally, this operator must be inverted anew with every
change in the structure (e.g., every change in the interface
shapes).
An alternative approach which can eliminate these difficulties
while retaining this FIE philosophy is based upon Boundary
Perturbations.
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Boundary Perturbation Methods

A Boundary Perturbation Method

We view the boundary deformations as small deviations of flat
interfaces: g(m) = εf (m).
Posit (verifiable a posteriori) that all of the relevant integral
operators depend analytically upon the perturbation parameter ε:

{A,R,M,Q} (ε) =
∞∑

n=0

{An,Rn,Mn,Qn} εn.

Insert these expansions into the governing equations MV(l) = Q:( ∞∑
n=0

Mnε
n

)( ∞∑
m=0

V(l)
mε

m

)
=

( ∞∑
n=0

Qnε
n

)
.

At order zero we solve

M0V(l)
0 = Q0 =⇒ V(l)

0 = M−1
0 Q0,

which solves the flat–interface configuration.
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Boundary Perturbation Methods

A Boundary Perturbation Implementation, cont.

At orders n > 0 we must solve

n∑
m=0

Mn−mV(l)
m = Qn

demanding that

V(l)
n = M−1

0

[
Qn −

n−1∑
m=0

Mn−mV(l)
m

]
,

and we recover higher order corrections by simply inverting M0.
We recall that the {M(ε),Q(ε)} depend upon the {A(ε),R(ε)} (in a
somewhat complicated way) so all we need are forms for the
{An,Rn}.
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Boundary Perturbation Methods

Boundary Perturbation Formula for A

Recall the integral relation Âp [L] = R̂p [ξ] , where

Âp [L] =

∫ d

0
(iβp)eiβp`e−iαp·xL(x) dx ,

and

A[L] =
1
|d |

∞∑
p=−∞

Âp[L]eiαp x̃ .

It is not difficult to show that, if ` = εf ,

Ân,p [L] =

∫ d

0
(iβp)(iβp)n

(
f n

n!

)
e−iαp·xL(x) dx ,

so

An[L] =
1
|d |

∞∑
p=−∞

Ân,p[L]eiαp x̃ .
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Numerical Results

Numerical Results, cont.

We return to our class of numerical simulations from earlier in the
talk.
However, for each 0 ≤ n ≤ N we apply Nyström’s Method to the
linear system MnV(l)

n = Qn.
Once again we consider exact solutions, and compute maximum
(relative) differences between computed and exact Dirichlet and
Neumann traces.
We consider one two–dimensional and one three–dimensional
configuration from before.
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Numerical Results

(Small) Smooth, Smooth Configuration (2D)
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Direct

BP(Taylor)

BP(Pade)

Relative error versus perturbation order
for the two–dimensional smooth,
smooth configuration:

β(0) = 1.1, β(1) = 2.2, β(2) = 3.3,

α = 0.1, g(1) = εfs, g(2) = εfs,
d = 2π, ε = 0.01.
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Numerical Results

(Large) Smooth, Smooth Configuration (2D)
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Direct
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Relative error versus perturbation order
for the two–dimensional smooth,
smooth configuration:

β(0) = 1.1, β(1) = 2.2, β(2) = 3.3,

α = 0.1, g(1) = εfs, g(2) = εfs,
d = 2π, ε = 0.25.
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Numerical Results

Two–Dimensional Conditioning and Timing

Nx κ(M) Time κ(M0) Time
20 331.701 1.06385 26.0527 10.6348
44 57140.3 2.94002 26.0527 21.6966
70 2.52636× 107 8.09251 34.8825 38.1575
94 6.33777× 109 18.8991 46.887 58.2081
120 2.0406× 1012 32.9924 59.8898 73.8986
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Numerical Results

Smooth, Smooth Configuration (3D)
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Relative error versus perturbation order
for the three–dimensional
smooth–smooth configuration:

β(0) = 1.1, β(1) = 2.2, β(2) = 3.3,
α1 = 0.1, α2 = 0.2,

g(1) = εf̃s, g(2) = εf̃s,
d1 = d2 = 2π, ε = 0.1.
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Numerical Results

Three–Dimensional Conditioning and Timing

Nx1 = Nx2 κ(M) Time κ(M0) Time
8 3174.55 8.74563 1589.91 11.2869

12 3174.55 47.6818 1589.91 25.5361
16 3174.55 206.106 1589.91 56.6273
20 3174.55 677.251 1589.91 107.622
24 3174.55 1780.91 1589.91 190.072
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Summary

Summary

The ability to robustly simulate scattered fields in periodic, layered
media with high accuracy is of fundamental importance.
Based upon a new surface formulation, we presented a novel
Integral Equation Method inspired by recent developments of
Fokas and collaborators.
These formulas do not involve the fundamental solution, but rather
smooth, “conjugated,” solutions of the periodic Helmholtz problem.
This means simple quadrature rules (e.g., Nyström’s Method) may
be utilized.
Further, periodization is unnecessary.
Importantly, due to a clever alternative to the standard Green’s
Identity, the derivative of the interface never appears.
Further, we extended this method using a Boundary Perturbation
Method to provide an accelerated approach.
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