
Kinematic Vortices in a Thin Film Driven by an Applied
Current

Peter Sternberg, Indiana University

Joint work with Lydia Peres Hari and Jacob Rubinstein
Technion



Consider a thin film superconductor subjected to an applied current of
magnitude I (fed through the sides) and a perpendicular applied magnetic
field of magnitude h.



Goal: Understanding anomalous vortex behavior

Standard magnetic vortex: localized region of trapped magnetic flux.
Within Ginzburg-Landau theory: zero of complex-valued order parameter
carrying non-zero degree.

However, experiments and numerics based on a Ginzburg-Landau type
model reveal unexpected behavior in the present setting.

• oscillatory (periodic) behavior characterized by oppositely ‘charged’
vortex pairs either
- nucleating inside the sample and then exiting on opposite sides
or
-entering the sample on opposite sides and ultimately colliding and
annihilating each other in the middle.
• Vortex emergence even with zero magnetic field:

“Kinematic vortices”
Andronov, Gordion, Kurin, Nefedov, Shereshevsky ’93,
Berdiyorov, Elmurodov, Peeters, Vodolazov, Milosevic ’09, Du ’03
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Ginzburg-Landau formulation of problem

Ψt + iφΨ = (∇− ihA0)2 Ψ + (Γ− |Ψ|2)Ψ for (x , y) ∈ R, t > 0,

∆φ = ∇ ·
(

i
2
{Ψ∇Ψ∗ −Ψ∗∇Ψ} − |Ψ|2 hA0

)
for (x , y) ∈ R, t > 0,

where R = [−L, L]× [−K ,K ], A0 = (−y , 0) and Γ > 0 prop. to Tc − T .

Note that we can view φ as φ[Ψ].

Boundary conditions for Ψ:

Ψ(±L, y , t) = 0 for |y | < δ,

(∇− ihA0) Ψ · n = 0 elsewhere on ∂R.
Boundary conditions for φ:

φx(±L, y , t) =

{
−I for |y | < δ,
0 for δ < |y | < K ,

φy (x ,±K , t) = 0 for |x | ≤ L.
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Rigorous bifurcation from normal state
Normal State: At high temp. (Γ small) and/or large magnetic field or
electric current, expect to see no superconductivity:

Ψ ≡ 0, φ = Iφ0

where

∆φ0 = 0 in R,

φ0
x(±L, y) =

{
−1 for |y | < δ,
0 for δ < |y | < K ,

φ0
y (x ,±K ) = 0 for |x | ≤ L.

Note: One easily checks that φ0 is odd in x and even in y :

φ0(−x , y) = −φ0(x , y) and φ0(x ,−y) = φ0(x , y).
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Linearization about Normal State:

Ψt = L[Ψ] + ΓΨ in R,

where

L[Ψ] :=
(
∇− ihA0)2Ψ− iIφ0Ψ.

subject to boundary conditions

Ψ(±L, y , t) = 0 for |y | < δ,

(∇− ihA0) Ψ · n = 0 elsewhere on ∂R,

L = Imaginary perturbation of (self-adjoint) magnetic Schrödinger
operator.



Spectral Properties of L

Note that L, and hence its spectrum, depend on L,K , δ, h and I.

• Spectrum of L consists only of point spectrum:

L[uj ] = −λj uj in R + boundary cond.’s, j = 1, 2, . . .

with 0 < Reλ1 ≤ Reλ2 ≤ . . . , and |Imλj | <
∥∥φ0∥∥

L∞
I

• PT-Symmetry: L invariant under the combined operations of
x → −x and complex conjugation ∗.

Hence, if (λj , uj) is an eigenpair then so is (λ∗j , u
†
j ) where

u†j (x , y) := u∗j (−x , y).

If λj is real, then uj = u†j , and indeed each λj is real for I small.
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Eigenvalue collisions =⇒ Complexification of spectrum
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Collisions of first 4 eigenvalues for L = 1, K = 2/3, δ = 1/6, h = 0.



Tuning the temperature to capture bifurcation

From now on, fix I > Ic so that Imλ1 6= 0.

Going back to linearized problem

Ψt = L[Ψ] + ΓΨ in R,

we see that once Γ exceeds Reλ1, normal state loses stability.

Set L1 := L+ Reλ1, so that bottom of spectrum of L1 consists of purely
imaginary eigenvalues:

±Imλ1 i ,

followed by eigenvalues having negative real part.

To capture this (Hopf) bifurcation we take

Γ = Reλ1 + ε for 0 < ε� 1.
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Formulation as a single nonlocal PDE:

With the choice Γ = Reλ1 + ε for 0 < ε� 1, full problem then takes the
form of a single nonlinear, nonlocal PDE:

Ψt = L1[Ψ] + εΨ +N (Ψ),

where
N (Ψ) := − |Ψ|2 Ψ− i φ̃[Ψ]Ψ,

with φ̃ = φ̃[Ψ] solving

∆φ̃ = ∇ ·
(
i

2
{Ψ∇Ψ∗ −Ψ∗∇Ψ} − |Ψ|2 hA0

)
in R

along with homogeneous boundary conditions on Ψ and φ̃.



Existence of periodic solutions via Center Manifold Theory

There exists a value ε0 > 0 such that for all positive ε < ε0, the system
undergoes a supercritical Hopf bifurcation to a periodic state (ψε, φε).

One has the estimate∥∥∥∥ψε − (
aε(t)u1 + aε(t)∗u†1

)∥∥∥∥
H2(R)

≤ Cε3/2

with
aε(t) := C0ε

1/2e−i χ t where χ = Imλ1 + γε

and C0 and γ are constants depending on certain integrals of u1.

Generalization of techniques from 1d problem by J.R., S. and K. Zumbrun.



A key element of the proof: Exploiting PT symmetry on
center manifold.

• For each ε small, there exists a graph Φε : S → H2(R;C) over center
subspace S := Span{u1, u2} and complex-valued functions α1(t), α2(t)
such that (for small initial data) solution to TDGL ψε describable as

ψε(t) = Φε (α1(t)u1 + α2(t)u2) .

• Projection onto S leads to dynamical system for α1 and α2.
Four real equations in four unknowns.
• One proves exponential attraction to PT-symmetric subset of center
manifold.

α1(t)u1 + α2(t)u2 = (α1(t)u1 + α2(t)u2)† ⇐⇒ α2 = α∗1.

Easy system for α1–explicitly solvable.
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A kinematic vortex motion law

According to theorem, the leading order term
(
O(ε1/2)

)
is:

ψ = aε(t)u1 + aε(t)∗u†1 with aε(t) = C0ε
1/2e−i χ t .

Focusing our attention along the center line x = 0 and writing

u1(0, y) = |u1(0, y)| e iβ(y) for some phase β(y)

we find that

ψ(0, y , t) = 2C0ε
1/2 |u1(0, y)| cos (β(y)− χt) .

Hence, the order parameter vanishes on the center line x = 0 whenever the
equation

χt = β(y) + π/2 + nπ, n = 0,±1,±2, ...

is satisfied. Recall that χ = Imλ1 + o(1).



Using shape of β to explain anomalous vortex behavior

Case 1: No magnetic field, h = 0. Recall that β = phase of u1(0, y).
Numerical computations reveal sensitive dependence on I.
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Here L = 1,K = 2/3, δ = 4/15. Note symmetry of β.



Case 2: Graphs of β when magnetic field present: h > 0.
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Symmetry broken so vortices enter/exit boundaries y = K and y = −K at
different times. Here we have taken h = 0.05.



Remarks on numerical experiments

• When magnetic field strength h is small, one only sees vortices on the
center line (kinematic).

• As h increases, many new effects:
(i) vortices enter/exit the top and bottom at different times.

(ii) some vortices move along and then slightly off center line
(in a periodic manner)

(iii) ‘magnetic vortices’ appear far from center line, presumably associated
with vortices of ground-state u1 of perturbed magnetic Schrödinger
operator (

∇− ihA0)2u1 − iIφ0u1 = −λ1u1
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Conclusions

• Through a rigorous center manifold approach we have identified a Hopf
bifurcation from the normal state to stable periodic solutions.

• The creation and motion of ‘kinematic vortices’ moving along the center
line x = 0 traced to PT symmetry and nature of first eigenfunction u1 of
linear operator along this line.

• Anomalous vortex behavior explained through sensitive dependence of
shape of phase of u1(0, y) on the value of applied current I.

• When magnetic field h is large enough, one sees motion of both
‘magnetic vortices’ off the center line and ‘kinematic vortices’ on or near
the center line.

• What happens deep in the nonlinear regime? (No longer small
amplitude)
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