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Consider a thin film superconductor subjected to an applied current of
magnitude I (fed through the sides) and a perpendicular applied magnetic
field of magnitude h.
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Standard magnetic vortex: localized region of trapped magnetic flux.

Within Ginzburg-Landau theory: zero of complex-valued order parameter
carrying non-zero degree.
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Boundary conditions for V:
V(L y,t) =0 for |y| <4,
(V—ihAg)V-n=0 elsewhere on OR.
Boundary conditions for ¢:
I for |y| <6,

Ox(Ely.t) = { 0 ford <|y| <K,
ody(x,£K,t) =0for |x| < L.



Rigorous bifurcation from normal state

Normal State: At high temp. (I small) and/or large magnetic field or
electric current, expect to see no superconductivity:
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Rigorous bifurcation from normal state

Normal State: At high temp. (I small) and/or large magnetic field or
electric current, expect to see no superconductivity:

where

A® =0 inR,
-1 for |y| < ¢
. - )
¢X(j:L7-y)_{0 f0r5<|}/|<Ka

¢9(x, £K) =0 for |x| < L.

Note: One easily checks that ¢° is odd in x and even in y:

¢O(_X7y) = _QSO(X’.V) and ¢0(X7 _)/) = ¢0(Xa)/)'




Linearization about Normal State:

W, = LV] 4TV inR,

where

LIV] := (V — ihA)*V — i1p°W.

subject to boundary conditions

V(£L,y,t) =0 for |y| <9,

(V —ihAg)V-n=0 elsewhere on OR,

L = Imaginary perturbation of (self-adjoint) magnetic Schrodinger
operator.
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Spectral Properties of L

Note that £, and hence its spectrum, depend on L, K, 4, h and 1.

e Spectrum of L consists only of point spectrum:

Lluj] = =Ajuj inR + boundary cond.’s, j =1,2,...

with 0 <Red; <ReX <..., and [Im)j| < [|¢°]],.c 1

e PT-Symmetry: L invariant under the combined operations of
x — —x and complex conjugation x.
Hence, if ()}, u;) is an eigenpair then so is (A7, uJT) where

ul(x,y) = uj (—=x, ).

If A\; is real, then u; = u}, and indeed each \; is real for I small.



Eigenvalue collisions = Complexification of spectrum

Re{ %
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Collisions of first 4 eigenvalues for L =1, K=2/3, 6 =1/6,h = 0.
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Tuning the temperature to capture bifurcation

From now on, fix I > I, so that Im A\; # 0.

Going back to linearized problem
V,=L[V]+TV inR,

we see that once ' exceeds Re A1, normal state loses stability.

Set L1 := L + Re A1, so that bottom of spectrum of £; consists of purely
imaginary eigenvalues:
+Im Aq i,

followed by eigenvalues having negative real part.

To capture this (Hopf) bifurcation we take

[=ReMi+e forO<ex 1.



Formulation as a single nonlocal PDE:

With the choice I = Re A\; + ¢ for 0 < ¢ < 1, full problem then takes the
form of a single nonlinear, nonlocal PDE:

V, = Li[V] + eV + N (W),
where _
N(V) = — W[V —ig[v]V,

with ¢ = @[V] solving

Ap=V- (é{wvw* —VUVV} — v hA0> in R

along with homogeneous boundary conditions on W and .



Existence of periodic solutions via Center Manifold Theory

There exists a value eg > 0 such that for all positive € < g, the system
undergoes a supercritical Hopf bifurcation to a periodic state (¢., ¢.).

One has the estimate

‘ e — (aa(t)ul + aE(t)*uI>

a*(t) == Goe'/2e Xt where x = Im A + e

S C63/2
H2(R)

with

and Cp and v are constants depending on certain integrals of uj.

Generalization of techniques from 1d problem by J.R., S. and K. Zumbrun.




A key element of the proof: Exploiting PT symmetry on
center manifold.

e For each ¢ small, there exists a graph ¢ : S — H2(R; C) over center
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A key element of the proof: Exploiting PT symmetry on
center manifold.

e For each ¢ small, there exists a graph ¢ : S — HQ(R; C) over center
subspace S := Span{uy, up} and complex-valued functions a1 (t), az(t)
such that (for small initial data) solution to TDGL . describable as

Ye(t) = O (aa(t)ur + ao(t)w2) .

e Projection onto S leads to dynamical system for a; and ap.
Four real equations in four unknowns.

e One proves exponential attraction to PT-symmetric subset of center
manifold.

ar(t)ur + aa(t)us = (ar(t)ur + aa(t)w)’ <= as = af.

Easy system for aj—explicitly solvable.



A kinematic vortex motion law
According to theorem, the leading order term (0(51/2)) is:

¢ =a (t)u + a° () ul  with a°(t) = Goel/2e X,
Focusing our attention along the center line x = 0 and writing
u1(0,y) = |u1(0, y)| €P)  for some phase 3(y)
we find that
$(0,y,t) = 2Co™/? |ur (0, y)| cos (B(y) — xt).-

Hence, the order parameter vanishes on the center line x = 0 whenever the
equation

xt=08(y)+n/2+nr, n=0,+1,+2 ...

is satisfied. Recall that y = Im A1 + o(1).



Using shape of 3 to explain anomalous vortex behavior

Case 1: No magnetic field, h = 0. Recall that 8 = phase of u1(0, y).
Numerical computations reveal sensitive dependence on 1.
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Here L=1,K =2/3,5 = 4/15. Note symmetry of 3.



Case 2: Graphs of 8 when magnetic field present: h > O.

0.04 ——

0.02 -

1:1=50

2:1=75

3:1=100
4:1=105
5:1=110
6:1=125
7:1=150

—0.02 -

—-0.04 -

—0.06 -

—0.08 [~

Symmetry broken so vortices enter/exit boundaries y = K and y = —K at
different times. Here we have taken h = 0.05.
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Remarks on numerical experiments

e When magnetic field strength h is small, one only sees vortices on the
center line (kinematic).

e As h increases, many new effects:
(i) vortices enter/exit the top and bottom at different times.

(ii) some vortices move along and then slightly off center line
(in a periodic manner)

(i) ‘magnetic vortices’ appear far from center line, presumably associated
with vortices of ground-state u; of perturbed magnetic Schrodinger
operator

(V = ihAo)?tn — i1¢%u = —Aqun
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Conclusions

e Through a rigorous center manifold approach we have identified a Hopf
bifurcation from the normal state to stable periodic solutions.

e The creation and motion of ‘kinematic vortices' moving along the center
line x = 0 traced to PT symmetry and nature of first eigenfunction u; of
linear operator along this line.

e Anomalous vortex behavior explained through sensitive dependence of
shape of phase of u;1(0,y) on the value of applied current I.

e When magnetic field h is large enough, one sees motion of both
‘magnetic vortices' off the center line and ‘kinematic vortices' on or near
the center line.

e What happens deep in the nonlinear regime? (No longer small
amplitude)



