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Why consider surface tension and resonance

Henderson and Hammack (1987) looked at instabilities in the
presence of surface tension (resonant triads):

e Consider a tank in deep water

e Generate waves at the back of the tank
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Why consider surface tension and resonance

Henderson and Hammack (1987) looked at instabilities in the
presence of surface tension (resonant triads):

e Examine the frequency of the waves at different points
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Ficurs 15. Temporal wave profiles and corresponding periodograms for Wilton's ripples
(9.8 Hz): sk, = 0.32,y = 0.
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Why consider surface tension and resonance

Waves generated at 19.6 Hz excited a harmonic at 9.8 Hz as they

propagated
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These phenomena are known as Wilton ripples. They are due to

the presence of surface tension.
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These phenomena are known as Wilton ripples. They are due to

the presence of surface tension.
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Some Background

The field of water waves has a long history. A few notable and
relevant works in this particular area include

o Wilton (1915) incorporated capillary effects in a series
solution and showed it diverges for surface tension parameter
equal to 1/n (for water of infinite depth).
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Some Background

The field of water waves has a long history. A few notable and
relevant works in this particular area include

o Wilton (1915) incorporated capillary effects in a series
solution and showed it diverges for surface tension parameter
equal to 1/n (for water of infinite depth).

e Vanden-Broeck et al. (since 1978) - studied the numerical
solutions for solitary and periodic capillary-gravity waves with
variable surface tension, including Wilton ripples (1D).

e Henderson and Hammack (1987) experimentally observed
Wilton ripples in a deep water wave tank.

o Akers and Gao (2012) looked at Wilton ripples in nonlinear
model equations and computed the perturbation series
expansions.
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Model

For an inviscid, incompressible fluid with velocity potential ¢(x, z,t)

z=n(x,t)
z=0 x
D
z=—h

z=0 r=1L
Gz + G2z =0, (.’L‘,Z) eD,
¢Z = 07 Z:_ha
M+ Nubz = Pz, z=n(z,1),

1 Naa

Gt ($2+02) +gn=0—"p, z=n(z,1),

where g: gravity, o: coefficient of surface tension, D: a periodic domain
and 7)(x,t): variable surface (in 1D) with period L = 27 and depth h.
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Approach

9/33

Our approach to investigating stability of stationary solutions is a
two-step process:

@® Reformulate the problem using the approach by Ablowitz,
Fokas and Musslimani and construct solutions for periodic
water waves in the travelling frame of reference.

® Check to see if constructed solutions are spectrally stable by
using the Floquet-Fourier-Hill (Bloch) method.
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So far

Gravity waves with and without surface tension
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So far

Gravity waves with and without surface tension are unstable
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Figure: Eigenvalues of the stability problem for gravity waves with no
surface tension (in black) and waves with a small coefficient of surface
tension (in red).
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So far

Gravity waves with and without surface tension are unstable

Figure: Eigenvalues of the stability problem for gravity waves with no
surface tension (in black) and waves with a small coefficient of surface
tension (in red).

B. Deconinck and K. Oliveras. The instability of periodic surface gravity
waves. J. Fluid Mech., 675:141-167, 2011.
B. Deconinck and O. Trichtchenko. Stability of periodic gravity waves in

10/33 the presence of surface tension. Submitted for publication, 2013.



Goal

Examine stability of periodic travelling gravity-capillary water
waves near resonance.
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Reformulation (Ablowitz, Fokas and Musslimani, 2006)

Starting with Euler’s equations

e Setting q(z,t) = ¢(x,n(z,t),t) (Zakharov, 1968), the
kinematic condition and the Bernoulli equation give

14 1(nt+‘nqu)2 Nxx
G+ -q; +9gn— = =0 .
27 2 1 +>n% (1‘+’U%)3/2
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Reformulation (Ablowitz, Fokas and Musslimani, 2006)

Starting with Euler’s equations

e Setting q(z,t) = ¢(x,n(z,t),t) (Zakharov, 1968), the
kinematic condition and the Bernoulli equation give

14 1(nt+‘nqu)2 Nxx
G+ -q; +9gn— = =0 .
27 2 1 +>n% (1‘+’U%)3/2

e Using Laplace’s equation and the boundary conditions,

2w
/ e (i cosh(k(n + R)) + gz sinh(k(n + h))) dz = 0,
0

VkeZ, k+#0.

12/33



Reformulation

e Switching to the travelling frame by setting (z,¢) — (x—ct, t).
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e Looking at the steady-state problem, set 77, = ¢; = 0.
e Use the local equation to obtain ¢.

e The non-local equation becomes

2m
ikx 2 2 77&71? 1 —
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Reformulation

e Switching to the travelling frame by setting (z,t) — (z—ct, t).
e Looking at the steady-state problem, set 77, = ¢; = 0.
e Use the local equation to obtain ¢.

e The non-local equation becomes

2m
ikx Nz . -

Vk € Z, k0.

How do we solve this?

@ Stokes' expansion (to see where the resonances are)
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Reformulation

e Switching to the travelling frame by setting (z,t) — (z—ct, t).
e Looking at the steady-state problem, set 77, = ¢; = 0.
e Use the local equation to obtain ¢.

e The non-local equation becomes

2m
ikx 2 2 77&71? 1 —
/0 e \/(lJrnm) (c an+20(1+ng)3/2> sinh(k(n + h))dz =0

Vk € Z, k0.

How do we solve this?

@ Stokes' expansion (to see where the resonances are)
® Numerical continuation employing Newton's method at each step
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Stokes' Expansion

The algorithm is

@ Set
o0 o
c= Zejcj and n = Zejnj
j=0 7=0
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Stokes' Expansion

The algorithm is

@ Set
o0 o
c= Ze]cj and n = Zejnj
j=0 7=0

® Substitute into

2
2 T .
/ \/ 1+1n2) —2gn + — 7n )3/2) sinh(k(n + h))dx =0

©® Group terms by order of €”

® Solve the recursion relation such that

cn = filen—1,¢n—2,...,¢c0) and np, = fo(Mn—1,Mn—2,---,M0)

very messy, but explicit!
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A Few Coefficients in Deep Water

In infinite depth (h = c0), obtain

co=V1+o 9 =10
=0 m = 2cos(x)
202 8 2(1
g = — o tot Ny = —Mcos@x)

20 — 1
3 2%+ 7042
2380 —1)(20—1)

4(1 +0)1/2(20 — 1)

c3=0 73 cos(3x)

Note: blow up if o = %
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Resonance Condition

Isolating for the coefficient of surface elevation in finite depth, we
get the following:

(0(2) — (0k® + g) tanh(k:h)) A = "a mess”
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Resonance Condition

Isolating for the coefficient of surface elevation in finite depth, we
get the following:

(0(2) — (0k® + g) tanh(k:h)) A = "a mess”

Resonance if

9 <tanh(hk) — ktanh(h)

ith k € Z
k tanh(h)—ktanh(hk:)) with o€

Near resonance (small divisor problem) if

2 — (ok* 4 g) tanh(kh) =~ 0 with ¢y = /(o + g) tanh(h)

Fix g and h, solve for o with a variety of k values near 20 or near 10.

17/33



Numerical Continuation

Recall

2m
Nzx .
/ \/14—721 —2977—|—2U(1Jr )3/2>smh(k(n+h))dm:0.

We want to generate a bifurcation diagram:
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Numerical Continuation

Recall

2m
ikx Nzx .
/0 e \/(1 +n2) <c2 —2gn + QJW) sinh(k(n + h))dx

We want to generate a bifurcation diagram:

@ Assume in general ny(z) = Zﬁ\:l a; cos(jx).

® Linearizing we can find the bifurcation will
start when ¢ = /(g + o) tanh(h) and 1/
n(x) = acos(x). \A/J

© Use this guess in Newton's method to
compute the true solution.

@ Scale the previous solution to get a guess for

=0.

the new bifurcation parameter.

@ Apply Newton's method to find the solution.
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Near Resonant Solutions - near £ = 20

19/33

Let h = 0.05 and compute o for k = 20.5
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Near Resonant Solutions - near £ = 20

Let h = 0.05 and compute o for k = 20.05
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Near Resonant Solutions - near & = 10
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Let h = 0.05 and compute o for k = 10.5
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Near Resonant Solutions - near & = 10
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Let h = 0.05 and compute o for k = 10.05
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Comparisons of Profiles - near k£ = 20
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Comparisons of Profiles - near £ = 10
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Stability Eigenvalue Problem

Recall the local equation

(N — Nz + qena)® Nex

1
2 1+ n2 ETRRE

12
Qt_CQx+§qz+g7]_
and the nonlocal equation

/0 ) e [i(n: — ene) cosh(k(n + h)) + o sinh(k(n + h))] dz = 0.
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Stability Eigenvalue Problem
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(N — Nz + qena)® Nex

1
2 1+n2 ETRRE

12
G = CGe + 542 T 91 =
and the nonlocal equation

/0 ) e [i(n: — ene) cosh(k(n + h)) + o sinh(k(n + h))] dz = 0.

O Let q(z,1) =qo(x)+eqi(z)eM+. .. and n(x) =ng(x)+en (z)eM+. . ..
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Stability Eigenvalue Problem

Recall the local equation

(N — Nz + qena)® Nex

1
2 1+ T+ gy

12
G = CGe + 542 T 91 =
and the nonlocal equation

/0 ) e [i(n: — ene) cosh(k(n + h)) + o sinh(k(n + h))] dz = 0.

O Let q(z,1) =qo(x)+eqi(z)eM+. .. and n(x) =ng(x)+en (z)eM+. . ..

® Using Floquet decompositions, we set 1; = e"“7; and ¢ = €',

imx

© Apply Fourier decomposition with 7; = Zx N"n,,e and

m=—o0
S } :30 9 imax
a1 = m=—00 Qm(i '

@ To allow perturbations of a different period, introduce spatial
averaging in the nonlocal equation.
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Eigenvalue Problem

After all the substitutions, obtain

-0 7@ [ @)

The local equation gives the row in blue and the nonlocal equation
gives the row in green.

Generalized eigenvalue problem
A=A, m,0)
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Eigenvalue Problem

After all the substitutions, obtain

-0 7@ [ @)

The local equation gives the row in blue and the nonlocal equation
gives the row in green.

Generalized eigenvalue problem
A=A, m,0)

The problem is Hamiltonian and due to symmetries,

R{A} # 0 = instability.
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Instability

For flat water, can compute the eigenvalues explicitly

Nirm = ic(p+m) £ iy/[g(p+m) + o (p+m)*] tanh((u + m)h)

= flat water is spectrally stable
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XE o = el +m) % i/ [g(n + m) + o (1 + m)?] tanh((u + m)h)
= flat water is spectrally stable

How does an instability arise?
e Eigenvalues are continuous with respect to the wave amplitude

e As amplitude increases they may develop a non-zero real part
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For flat water, can compute the eigenvalues explicitly

Nirm = ic(p+m) £ iy/[g(p+m) + o (p+m)*] tanh((u + m)h)

= flat water is spectrally stable

How does an instability arise?

A necessary condition for loss of stability is

+ _\+
Ay = Agm



Instabilities
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Instabilities near &k = 20
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Instabilities near £ = 10
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Conclusions

e Solutions can be computed near resonance.

o A larger coefficient of surface tension does not stabilize the
solutions.

e As the parameter of surface tension gets larger, the waves
become more unstable.
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Future Work

e Compute solutions to a higher precision (quadruple precision,
with Jon Wilkening at Berkeley).

e Compute the stability spectra for more values of the Floquet
parameter.

e Track the new instabilities along the bifurcation branch.

e Track the instabilities as the surface tension parameter is
varied.

e Examine the form of the perturbations that lead to the new
instabilities.
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THANK YOU FOR YOUR ATTENTION
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