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Lie groupoids are often equipped with “compatible” geometry...

o functions: f € C>*(G), f(gh)=1f(g)+ f(h) (1-cocycles)

o Vector fields: infinitesimal automorphisms (Xg, = lg(Xs) + ra(Xg))

o Poisson-Lie groups: m: G x G — G Poisson map.

o Symplectic groupoids: graph(m) C G x G x G Lagrangian submf.
o Differential forms: 0w = pjw — m*w + pyw = 0.

o Complex Lie groups: m: G x G — G holomorphic map.

o Contact structures, distributions, projections ( e.g. Connections)...

Recurrent problem: infinitesimal counterparts, integration...
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Consider G = M, 7€l (NITG R APT*G).

TG = TM, T*G = A* are Lie groupoids; also their direct sums.
Consider the Lie groupoid

G=(@T"G)®(@PTG) =M= (07A") ® (P TM).
View 7 € [(AYTG @ APT*G) as function T € C(G):

(o1,...,0q, X1,...,Xp) »;T(al,...,ozq,Xl,...,Xp).

Definition:

7 is multiplicative if 7 € C°°(G) is multiplicative. (1-cocycle)
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For functions: multiplicative f € C*(G) = u € '(A*), dap =0.

Given a € T(A),
Lorf =t"(u(a)).

For tensors 7 € [(AITG ® APT*G), want i : [(A) — C>(M),
LarT = t"(fi(a)),

for a € I'(A).

Enough to use particular types of sections a € ['(A)...
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FATARAPT*M) = T(NITG @ APT*G),
XRar—x ®t'a
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How about cocycle equations?
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(1) D([a, b]) = a.D(b) — b.D(a)
(2) I([a, b]) = a.I(b) — iyp)D(a)
(3) r(Lpayex) = a.r(@) + ip)D(a)
(4) ip(a)/(b) = —ipp)l(a)

(5) iprar(B) = —ippr(a)

(6) ip(a)r(@) = —ipral(a).

Here I'(A) acts on [(A*A® A*T*M) via
a(b®a)=[abl®a+b®L,,a

(Redundancies...)
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Let G = M be s.s.c., A— M its Lie algebroid.

Theorem: (B., Drummond)
1-1 correspondence between 7 € [(AYTG ® AP T*G) multiplicative

and (D, 1, r), where
D :T(A) = T(AYA® APT*M), Leibniz-like condition,
[:A— NARAPTIT*M,
riT*M — ATTAQAPT*M,

satisfying (1)—(6).

(more general tensors, coefficients in reps...)
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Infinitesimal components become:

§: T(A®A) = T(A*T971A4),
such that

5(ab) = 6(a)b + (—1)12a=1a5(b)

5([a, b]) = [da, b] + (—1)Ual=1(a=1)[a §b]
(bo=r, 61 =D)

E.g. (quasi-)Poisson groupoids and (quasi-)Lie bialgebroids...
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(0, p): multiplicative differential forms

Infinitesimal components become:
piA—=APIT*M, v:A—= APT*M,
such that
in(a) (D) = —ip(p)1i(a),
M([a7 b]) = ﬁp(a M(b) - p(b (a) - ip(b)V(a)'
V([a, b]) = ‘cp(a V(b) p(b (a)
(u=1v=D—dpu)

E.g. symplectic groupoids and Poisson structures...
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(1, p): vector-valued forms Q(G, TG)

Infinitesimal components become (D, 74, ),

D:Q*(M,A) = Q*P(M, A),
TANTM@A— ATPITM® A,
™ € QP(M, TM),

plus compatibilities...
(Do = D, (TA)O = /, ™ — r*)

GLA relative to Frolicher-Nijenhuis bracket on multiplicative Q*(G, TG)...
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Particularcase p=1: J: TG —> TG

Components are (D, Ja, Ju),
Ja: A=A

Iy TM = TM,

D:T(A) = [(T*M & A).

Can analyze 3[J,J] = N, € Q*(G, TG) infinitesimally...

E.g. holomorphic Lie groupoids = holomorphic Lie algebroids...
complex Lie group: Lie bracket complex bilinear

holomorphic vector bundle: flat, partial T1%-connection

more: holomorphic symplectic/Poisson groupoids, almost product...



Thank you



