Multiplicative geometric structures

Henrique Bursztyn, IMPA (joint with Thiago Drummond, UFRJ)

Workshop on EDS and Lie theory

Fields Institute, December 2013

Outline:

- 1. Motivation: geometry on Lie groupoids
- 2. Multiplicative structures
- 3. Infinitesimal/global correspondence
- 4. Examples and applications

$$\diamond$$
 functions: $f \in C^{\infty}(\mathcal{G})$, $f(gh) = f(g) + f(h)$ (1-cocycles)

- \diamond functions: $f \in C^{\infty}(\mathcal{G})$, f(gh) = f(g) + f(h) (1-cocycles)
- \diamond Vector fields: infinitesimal automorphisms $(X_{gh} = I_g(X_h) + r_h(X_g))$

- \diamond functions: $f \in C^{\infty}(\mathcal{G})$, f(gh) = f(g) + f(h) (1-cocycles)
- \diamond Vector fields: infinitesimal automorphisms $(X_{gh} = I_g(X_h) + r_h(X_g))$
- \diamond *Poisson-Lie groups*: $m: G \times G \rightarrow G$ Poisson map.

- \diamond functions: $f \in C^{\infty}(\mathcal{G})$, f(gh) = f(g) + f(h) (1-cocycles)
- \diamond Vector fields: infinitesimal automorphisms $(X_{gh} = I_g(X_h) + r_h(X_g))$
- \diamond Poisson-Lie groups: $m: G \times G \rightarrow G$ Poisson map.
- \diamond *Symplectic groupoids*: graph(m) $\subset \mathcal{G} \times \mathcal{G} \times \overline{\mathcal{G}}$ Lagrangian submf.

- \diamond functions: $f \in C^{\infty}(\mathcal{G})$, f(gh) = f(g) + f(h) (1-cocycles)
- \diamond Vector fields: infinitesimal automorphisms $(X_{gh} = I_g(X_h) + r_h(X_g))$
- \diamond Poisson-Lie groups: $m: G \times G \rightarrow G$ Poisson map.
- \diamond *Symplectic groupoids*: graph(m) $\subset \mathcal{G} \times \mathcal{G} \times \overline{\mathcal{G}}$ Lagrangian submf.
- \diamond Differential forms: $\partial \omega = p_1^* \omega m^* \omega + p_2^* \omega = 0$.

- \diamond functions: $f \in C^{\infty}(\mathcal{G})$, f(gh) = f(g) + f(h) (1-cocycles)
- \diamond Vector fields: infinitesimal automorphisms $(X_{gh} = I_g(X_h) + r_h(X_g))$
- \diamond Poisson-Lie groups: $m: G \times G \rightarrow G$ Poisson map.
- \diamond *Symplectic groupoids*: graph(m) $\subset \mathcal{G} \times \mathcal{G} \times \overline{\mathcal{G}}$ Lagrangian submf.
- \diamond Differential forms: $\partial \omega = p_1^* \omega m^* \omega + p_2^* \omega = 0$.
- ♦ Complex Lie groups: $m: G \times G \rightarrow G$ holomorphic map.

- \diamond functions: $f \in C^{\infty}(\mathcal{G})$, f(gh) = f(g) + f(h) (1-cocycles)
- \diamond Vector fields: infinitesimal automorphisms $(X_{gh} = I_g(X_h) + r_h(X_g))$
- \diamond Poisson-Lie groups: $m: G \times G \rightarrow G$ Poisson map.
- \diamond Symplectic groupoids: graph $(m) \subset \mathcal{G} \times \mathcal{G} \times \overline{\mathcal{G}}$ Lagrangian submf.
- \diamond Differential forms: $\partial \omega = p_1^* \omega m^* \omega + p_2^* \omega = 0$.
- ⋄ Complex Lie groups: $m : G \times G \rightarrow G$ holomorphic map.
- ♦ Contact structures, distributions, projections (e.g. connections)...

Lie groupoids are often equipped with "compatible" geometry...

- \diamond functions: $f \in C^{\infty}(\mathcal{G})$, f(gh) = f(g) + f(h) (1-cocycles)
- \diamond Vector fields: infinitesimal automorphisms $(X_{gh} = I_g(X_h) + r_h(X_g))$
- \diamond Poisson-Lie groups: $m: G \times G \rightarrow G$ Poisson map.
- \diamond Symplectic groupoids: graph $(m) \subset \mathcal{G} \times \mathcal{G} \times \overline{\mathcal{G}}$ Lagrangian submf.
- \diamond Differential forms: $\partial \omega = p_1^* \omega m^* \omega + p_2^* \omega = 0$.
- ⋄ Complex Lie groups: $m : G \times G \rightarrow G$ holomorphic map.
- ♦ Contact structures, distributions, projections (e.g. connections)...

Recurrent problem: infinitesimal counterparts, integration...

Some cases have been considered, through different methods...

Some cases have been considered, through different methods...

- [1] Crainic: Differentiable and algebroid cohomology, van Est isomorphisms, and characteristic classes, *Comment. Math. Helv.* (2003)
- [2] Drinfel'd: Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of the classical Yang-Baxter equations. *Soviet Math. Dokl.* (1983).
- [3] Lu, Weinstein: Poisson Lie groups, dressing transformations, and Bruhat decompositions. *J. Differential Geom.* (1990).
- [4] Weinstein: Symplectic groupoids and Poisson manifolds. *Bull. Amer. Math. Soc.* (1987).
- [5] Mackenzie, Xu: Lie bialgebroids and Poisson groupoids. Duke Math. J. (1994),
- [6] Mackenzie, Xu: Integration of Lie bialgebroids. Topology (2000).
- [7] B., Crainic, Weinstein, Zhu: Integration of twisted Dirac brackets, *Duke Math. J.* (2004).
- [8] B., Cabrera: Multiplicative forms at the infinitesimal level. Math. Ann. (2012).
- [9] Crainic, Abad: The Weil algebra and Van Est isomorphism. Ann. Inst. Fourier (2011).
- [10] Laurent, Stienon, Xu: Integration of holomorphic Lie algebroids. *Math.Ann.* (2009).
- [11] Iglesias, Laurent, Xu: Universal lifting and quasi-Poisson groupoids. JEMS (2012).
- [12] Crainic, Salazar, Struchiner: Multiplicative forms and Spencer operators.

Consider $\mathcal{G} \rightrightarrows M$, $\tau \in \Gamma(\wedge^q T\mathcal{G} \otimes \wedge^p T^*\mathcal{G})$.

Consider $\mathcal{G} \rightrightarrows M$, $\tau \in \Gamma(\wedge^q T\mathcal{G} \otimes \wedge^p T^*\mathcal{G})$.

 $T\mathcal{G} \rightrightarrows TM$, $T^*\mathcal{G} \rightrightarrows A^*$ are Lie groupoids; also their direct sums.

Consider $\mathcal{G} \rightrightarrows M$, $\tau \in \Gamma(\wedge^q T\mathcal{G} \otimes \wedge^p T^*\mathcal{G})$.

 $T\mathcal{G} \rightrightarrows TM$, $T^*\mathcal{G} \rightrightarrows A^*$ are Lie groupoids; also their direct sums.

Consider the Lie groupoid

$$\mathbb{G} = (\oplus^q T^*\mathcal{G}) \oplus (\oplus^p T\mathcal{G}) \rightrightarrows \mathbb{M} = (\oplus^q A^*) \oplus (\oplus^p TM).$$

Consider $\mathcal{G} \rightrightarrows M$, $\tau \in \Gamma(\wedge^q T\mathcal{G} \otimes \wedge^p T^*\mathcal{G})$.

 $T\mathcal{G} \rightrightarrows TM$, $T^*\mathcal{G} \rightrightarrows A^*$ are Lie groupoids; also their direct sums.

Consider the Lie groupoid

$$\mathbb{G} = (\oplus^q T^*\mathcal{G}) \oplus (\oplus^p T\mathcal{G}) \rightrightarrows \mathbb{M} = (\oplus^q A^*) \oplus (\oplus^p TM).$$

View $\tau \in \Gamma(\wedge^q T\mathcal{G} \otimes \wedge^p T^*\mathcal{G})$ as function $\bar{\tau} \in C^{\infty}(\mathbb{G})$:

$$(\alpha_1,\ldots,\alpha_q,X_1,\ldots,X_p) \stackrel{\bar{\tau}}{\mapsto} \tau(\alpha_1,\ldots,\alpha_q,X_1,\ldots,X_p).$$

Consider $\mathcal{G} \rightrightarrows M$, $\tau \in \Gamma(\wedge^q T\mathcal{G} \otimes \wedge^p T^*\mathcal{G})$.

 $T\mathcal{G} \rightrightarrows TM$, $T^*\mathcal{G} \rightrightarrows A^*$ are Lie groupoids; also their direct sums.

Consider the Lie groupoid

$$\mathbb{G} = (\oplus^q T^* \mathcal{G}) \oplus (\oplus^p T \mathcal{G}) \rightrightarrows \mathbb{M} = (\oplus^q A^*) \oplus (\oplus^p T M).$$

View $\tau \in \Gamma(\wedge^q T\mathcal{G} \otimes \wedge^p T^*\mathcal{G})$ as function $\bar{\tau} \in C^{\infty}(\mathbb{G})$:

$$(\alpha_1,\ldots,\alpha_q,X_1,\ldots,X_p)\stackrel{\bar{\tau}}{\mapsto} \tau(\alpha_1,\ldots,\alpha_q,X_1,\ldots,X_p).$$

Definition:

au is **multiplicative** if $\bar{\tau} \in C^{\infty}(\mathbb{G})$ is multiplicative. (1-cocycle)

For functions: multiplicative $f \in C^{\infty}(\mathcal{G}) \iff \mu \in \Gamma(A^*), d_A\mu = 0.$

For functions: multiplicative $f \in C^{\infty}(\mathcal{G}) \iff \mu \in \Gamma(A^*), \ d_A \mu = 0.$ Given $a \in \Gamma(A)$, $\mathcal{L}_{a^r} f = t^*(\mu(a)).$

For functions: multiplicative $f \in C^{\infty}(\mathcal{G}) \iff \mu \in \Gamma(A^*), d_A\mu = 0.$ Given $a \in \Gamma(A)$,

$$\mathcal{L}_{a^r}f = t^*(\mu(a)).$$

For tensors $\tau \in \Gamma(\wedge^q T\mathcal{G} \otimes \wedge^p T^*\mathcal{G})$, want $\bar{\mu} : \Gamma(\mathbb{A}) \to C^{\infty}(\mathbb{M})$,

$$\mathcal{L}_{\mathbf{a}^r}\bar{\tau} = \mathbf{t}^*(\bar{\mu}(\mathbf{a})),$$

for $a \in \Gamma(A)$.

For functions: multiplicative $f \in C^{\infty}(\mathcal{G}) \iff \mu \in \Gamma(A^*), d_A \mu = 0.$ Given $a \in \Gamma(A)$,

$$\mathcal{L}_{\mathsf{a}^r}f=t^*(\mu(\mathsf{a})).$$

For tensors $\tau \in \Gamma(\wedge^q T\mathcal{G} \otimes \wedge^p T^*\mathcal{G})$, want $\bar{\mu} : \Gamma(\mathbb{A}) \to C^{\infty}(\mathbb{M})$,

$$\mathcal{L}_{\mathbf{a}^r}\bar{\tau}=\mathfrak{t}^*(\bar{\mu}(\mathbf{a})),$$

for $a \in \Gamma(A)$.

Enough to use particular types of sections $a \in \Gamma(\mathbb{A})...$

Key facts:

 \diamond Information about $\mathcal{L}_{a'}\bar{\tau}$ encoded in

$$\mathcal{L}_{a^r}\tau \in \Gamma(\wedge^q T\mathcal{G} \otimes \wedge^p T^*\mathcal{G}),$$

$$i_{a^r}\tau \in \Gamma(\wedge^q T\mathcal{G} \otimes \wedge^{p-1} T^*\mathcal{G}),$$

$$i_{t^*\alpha}\tau \in \Gamma(\wedge^{q-1} T\mathcal{G} \otimes \wedge^p T^*\mathcal{G}),$$
for $a \in \Gamma(A), \ \alpha \in \Omega^1(M).$

Key facts:

 \diamond Information about $\mathcal{L}_{a'}\bar{\tau}$ encoded in

$$\mathcal{L}_{\mathsf{a}^r} au \in \Gamma(\wedge^q T\mathcal{G} \otimes \wedge^p T^*\mathcal{G}),$$
 $i_{\mathsf{a}^r} au \in \Gamma(\wedge^q T\mathcal{G} \otimes \wedge^{p-1} T^*\mathcal{G}),$ $i_{t^*\alpha} au \in \Gamma(\wedge^{q-1} T\mathcal{G} \otimes \wedge^p T^*\mathcal{G}),$ for $a \in \Gamma(A), \ \alpha \in \Omega^1(M).$

 \diamond The map $\mathfrak{t}^*: C^\infty(\mathbb{M}) o C^\infty(\mathbb{G})$ restricts to

$$\Gamma(\wedge^q A \otimes \wedge^p T^* M) \to \Gamma(\wedge^q T \mathcal{G} \otimes \wedge^p T^* \mathcal{G}),$$
$$\chi \otimes \alpha \mapsto \chi^r \otimes t^* \alpha$$

As a result of $\mathcal{L}_{\mathbf{a}'}\bar{\tau}=\mathbf{t}^*(\bar{\mu}(\mathbf{a})), \bar{\mu}$ completely determined by

As a result of $\mathcal{L}_{\mathbf{a}'}\bar{\tau}=\mathfrak{t}^*(\bar{\mu}(\mathbf{a}))$, $\bar{\mu}$ completely determined by

$$D: \Gamma(A) \to \Gamma(\wedge^q A \otimes \wedge^p T^*M),$$

$$I: A \to \wedge^q A \otimes \wedge^{p-1} T^* M$$
,

$$r: T^*M \to \wedge^{q-1}A \otimes \wedge^p T^*M$$
,

As a result of $\mathcal{L}_{\mathbf{a}'}\bar{\tau}=\mathfrak{t}^*(\bar{\mu}(\mathbf{a})), \bar{\mu}$ completely determined by

$$D: \Gamma(A) \to \Gamma(\wedge^q A \otimes \wedge^p T^* M),$$

$$I: A \to \wedge^q A \otimes \wedge^{p-1} T^* M,$$

$$r: T^* M \to \wedge^{q-1} A \otimes \wedge^p T^* M.$$

such that

$$\mathcal{L}_{a^r} \tau = \mathfrak{t}^*(D(a)),$$

 $i_{a^r} \tau = \mathfrak{t}^*(I(a)),$
 $i_{t^*\alpha} \tau = \mathfrak{t}^*(r(\alpha)).$

Leibniz-like condition: $D(fa) = fD(a) + df \wedge I(a) - a \wedge r(\alpha)$

As a result of $\mathcal{L}_{\mathbf{a}'}\bar{\tau}=\mathfrak{t}^*(\bar{\mu}(\mathbf{a})), \bar{\mu}$ completely determined by

$$D: \Gamma(A) \to \Gamma(\wedge^q A \otimes \wedge^p T^* M),$$

$$I: A \to \wedge^q A \otimes \wedge^{p-1} T^* M,$$

$$r: T^* M \to \wedge^{q-1} A \otimes \wedge^p T^* M,$$

such that

$$\mathcal{L}_{a^r} \tau = \mathrm{t}^*(D(a)),$$

 $i_{a^r} \tau = \mathrm{t}^*(I(a)),$
 $i_{t^*\alpha} \tau = \mathrm{t}^*(r(\alpha)).$

Leibniz-like condition: $D(fa) = fD(a) + df \wedge I(a) - a \wedge r(\alpha)$

We call (D, I, r) the *infinitesimal components* of τ .

As a result of $\mathcal{L}_{\mathbf{a}^r}\bar{\tau}=\mathfrak{t}^*(\bar{\mu}(\mathbf{a}))$, $\bar{\mu}$ completely determined by

$$D: \Gamma(A) \to \Gamma(\wedge^q A \otimes \wedge^p T^*M),$$

$$I: A \to \wedge^q A \otimes \wedge^{p-1} T^*M,$$

$$r: T^*M \to \wedge^{q-1} A \otimes \wedge^p T^*M,$$

such that

$$\mathcal{L}_{a^r} \tau = \mathfrak{t}^*(D(a)),$$

 $i_{a^r} \tau = \mathfrak{t}^*(I(a)),$
 $i_{\mathfrak{t}^*\alpha} \tau = \mathfrak{t}^*(r(\alpha)).$

Leibniz-like condition: $D(fa) = fD(a) + df \wedge I(a) - a \wedge r(\alpha)$

We call (D, I, r) the *infinitesimal components* of τ .

How about cocycle equations?

Cocycle equations for (D, r, I):

(1)
$$D([a,b]) = a.D(b) - b.D(a)$$

(2)
$$I([a,b]) = a.I(b) - i_{\rho(b)}D(a)$$

(3)
$$r(\mathcal{L}_{\rho(a)}\alpha) = a.r(\alpha) + i_{\rho^*(\alpha)}D(a)$$

(4)
$$i_{\rho(a)}I(b) = -i_{\rho(b)}I(a)$$

(5)
$$i_{\rho^*\alpha}r(\beta) = -i_{\rho^*\beta}r(\alpha)$$

(6)
$$i_{\rho(a)}r(\alpha) = -i_{\rho^*\alpha}I(a)$$
.

Cocycle equations for (D, r, I):

(1)
$$D([a,b]) = a.D(b) - b.D(a)$$

(2)
$$I([a,b]) = a.I(b) - i_{\rho(b)}D(a)$$

(3)
$$r(\mathcal{L}_{\rho(a)}\alpha) = a.r(\alpha) + i_{\rho^*(\alpha)}D(a)$$

(4)
$$i_{\rho(a)}I(b) = -i_{\rho(b)}I(a)$$

(5)
$$i_{\rho^*\alpha}r(\beta) = -i_{\rho^*\beta}r(\alpha)$$

(6)
$$i_{\rho(a)}r(\alpha) = -i_{\rho^*\alpha}I(a)$$
.

Here $\Gamma(A)$ acts on $\Gamma(\wedge^{\bullet}A \otimes \wedge^{\bullet}T^*M)$ via

$$a.(b \otimes \alpha) = [a, b] \otimes \alpha + b \otimes \mathcal{L}_{\rho(a)} \alpha$$

Cocycle equations for (D, r, I):

(1)
$$D([a,b]) = a.D(b) - b.D(a)$$

(2)
$$I([a,b]) = a.I(b) - i_{\rho(b)}D(a)$$

(3)
$$r(\mathcal{L}_{\rho(a)}\alpha) = a.r(\alpha) + i_{\rho^*(\alpha)}D(a)$$

(4)
$$i_{\rho(a)}I(b) = -i_{\rho(b)}I(a)$$

(5)
$$i_{\rho^*\alpha}r(\beta) = -i_{\rho^*\beta}r(\alpha)$$

(6)
$$i_{\rho(a)}r(\alpha) = -i_{\rho^*\alpha}I(a)$$
.

Here $\Gamma(A)$ acts on $\Gamma(\wedge^{\bullet}A \otimes \wedge^{\bullet}T^*M)$ via

$$a.(b \otimes \alpha) = [a, b] \otimes \alpha + b \otimes \mathcal{L}_{\rho(a)} \alpha$$

(Redundancies...)

3. The infinitesimal/global correspondence

Let $\mathcal{G} \rightrightarrows M$ be s.s.c., $A \to M$ its Lie algebroid.

3. The infinitesimal/global correspondence

Let $\mathcal{G} \rightrightarrows M$ be s.s.c., $A \to M$ its Lie algebroid.

Theorem: (B., Drummond)

1-1 correspondence between $\tau \in \Gamma(\wedge^q T\mathcal{G} \otimes \wedge^p T^*\mathcal{G})$ multiplicative and (D, I, r), where

$$D: \Gamma(A) \to \Gamma(\wedge^q A \otimes \wedge^p T^* M)$$
, Leibniz-like condition,

$$I:A\to \wedge^q A\otimes \wedge^{p-1} T^*M$$
,

$$r: T^*M \to \wedge^{q-1}A \otimes \wedge^p T^*M$$
,

3. The infinitesimal/global correspondence

Let $\mathcal{G} \rightrightarrows M$ be s.s.c., $A \to M$ its Lie algebroid.

Theorem: (B., Drummond)

1-1 correspondence between $\tau \in \Gamma(\wedge^q T\mathcal{G} \otimes \wedge^p T^*\mathcal{G})$ multiplicative and (D, I, r), where

$$D: \Gamma(A) \to \Gamma(\wedge^q A \otimes \wedge^p T^* M)$$
, Leibniz-like condition,

$$I: A \to \wedge^q A \otimes \wedge^{p-1} T^* M$$

$$r: T^*M \to \wedge^{q-1}A \otimes \wedge^p T^*M$$
,

satisfying (1)-(6).

3. The infinitesimal/global correspondence

Let $\mathcal{G} \rightrightarrows M$ be s.s.c., $A \to M$ its Lie algebroid.

Theorem: (B., Drummond)

1-1 correspondence between $\tau \in \Gamma(\wedge^q T\mathcal{G} \otimes \wedge^p T^*\mathcal{G})$ multiplicative and (D, I, r), where

$$D: \Gamma(A) \to \Gamma(\wedge^q A \otimes \wedge^p T^*M)$$
, Leibniz-like condition,

$$I: A \to \wedge^q A \otimes \wedge^{p-1} T^* M$$

$$r: T^*M \to \wedge^{q-1}A \otimes \wedge^p T^*M$$
,

(more general tensors, coefficients in reps...)

Infinitesimal components become:

$$\delta: \Gamma(\wedge^{\bullet}A) \to \Gamma(\wedge^{\bullet+q-1}A),$$

such that

$$\delta(ab) = \delta(a)b + (-1)^{|a|(q-1)}a\delta(b)$$

$$\delta([a,b]) = [\delta a,b] + (-1)^{(|a|-1)(q-1)}[a,\delta b]$$

Infinitesimal components become:

$$\delta: \Gamma(\wedge^{\bullet}A) \to \Gamma(\wedge^{\bullet+q-1}A),$$

such that

$$\delta(ab) = \delta(a)b + (-1)^{|a|(q-1)}a\delta(b)$$

$$\delta([a,b]) = [\delta a,b] + (-1)^{(|a|-1)(q-1)}[a,\delta b]$$
 $(\delta_0 = r, \delta_1 = D)$

Infinitesimal components become:

$$\delta: \Gamma(\wedge^{\bullet}A) \to \Gamma(\wedge^{\bullet+q-1}A),$$

such that

$$\delta(ab) = \delta(a)b + (-1)^{|a|(q-1)}a\delta(b)$$

 $\delta([a,b]) = [\delta a,b] + (-1)^{(|a|-1)(q-1)}[a,\delta b]$

$$(\delta_0 = r, \delta_1 = D)$$

E.g. (quasi-)Poisson groupoids and (quasi-)Lie bialgebroids...

(0, p): multiplicative differential forms

(0, p): multiplicative differential forms

Infinitesimal components become:

$$\mu: A \to \wedge^{p-1} T^*M$$
, $\nu: A \to \wedge^p T^*M$,

(0, p): multiplicative differential forms

Infinitesimal components become:

$$\mu:A o \wedge^{p-1}T^*M, \quad \nu:A o \wedge^pT^*M,$$
 such that
$$i_{
ho(a)}\mu(b)=-i_{
ho(b)}\mu(a), \ \mu([a,b])=\mathcal{L}_{
ho(a)}\mu(b)-i_{
ho(b)}d\mu(a)-i_{
ho(b)}
u(a), \
u([a,b])=\mathcal{L}_{
ho(a)}
u(b)-i_{
ho(b)}d
u(a).$$

(0,p): multiplicative differential forms

Infinitesimal components become:

$$\mu:A o \wedge^{p-1}T^*M,\quad \nu:A o \wedge^pT^*M,$$
 such that
$$i_{
ho(a)}\mu(b)=-i_{
ho(b)}\mu(a), \ \mu([a,b])=\mathcal{L}_{
ho(a)}\mu(b)-i_{
ho(b)}d\mu(a)-i_{
ho(b)}\nu(a), \
\nu([a,b])=\mathcal{L}_{
ho(a)}\nu(b)-i_{
ho(b)}d\nu(a).$$
 $(\mu=I,\, \nu=D-d\mu)$

(0,p): multiplicative differential forms

Infinitesimal components become:

$$\mu:A o \wedge^{p-1}T^*M, \quad \nu:A o \wedge^pT^*M,$$
 such that
$$i_{
ho(a)}\mu(b)=-i_{
ho(b)}\mu(a), \\ \mu([a,b])=\mathcal{L}_{
ho(a)}\mu(b)-i_{
ho(b)}d\mu(a)-i_{
ho(b)}\nu(a), \\
\nu([a,b])=\mathcal{L}_{
ho(a)}\nu(b)-i_{
ho(b)}d\nu(a).$$
 $(\mu=I, \ \nu=D-d\mu)$

E.g. symplectic groupoids and Poisson structures...

Infinitesimal components become (D, τ_A, τ_M) ,

$$D: \Omega^{\bullet}(M, A) \to \Omega^{\bullet+p}(M, A),$$

$$\tau_A: \wedge^{\bullet} T^*M \otimes A \to \wedge^{\bullet+p-1} T^*M \otimes A,$$

$$\tau_M \in \Omega^p(M, TM),$$

plus compatibilities...

Infinitesimal components become (D, τ_A, τ_M) ,

$$D: \Omega^{\bullet}(M, A) \to \Omega^{\bullet+p}(M, A),$$

$$\tau_A: \wedge^{\bullet} T^*M \otimes A \to \wedge^{\bullet+p-1} T^*M \otimes A,$$

$$\tau_M \in \Omega^p(M, TM),$$

plus compatibilities...

$$(D_0 = D, (\tau_A)_0 = I, \tau_M = r^*)$$

Infinitesimal components become (D, τ_A, τ_M) ,

$$D: \Omega^{\bullet}(M, A) \to \Omega^{\bullet+p}(M, A),$$

$$\tau_A: \wedge^{\bullet} T^*M \otimes A \to \wedge^{\bullet+p-1} T^*M \otimes A,$$

$$\tau_M \in \Omega^p(M, TM),$$

plus compatibilities...

$$(D_0 = D, (\tau_A)_0 = I, \tau_M = r^*)$$

GLA relative to *Frolicher-Nijenhuis* bracket on multiplicative $\Omega^{\bullet}(\mathcal{G}, \mathcal{TG})$...

Components are (D, J_A, J_M) ,

 $J_A:A\to A$,

 $J_M:TM\to TM$,

 $D:\Gamma(A)\to\Gamma(T^*M\otimes A).$

Components are (D, J_A, J_M) ,

 $J_A:A\to A$,

 $J_M:TM\to TM$,

 $D: \Gamma(A) \to \Gamma(T^*M \otimes A).$

Can analyze $\frac{1}{2}[J,J]=N_J\in\Omega^2(\mathcal{G},T\mathcal{G})$ infinitesimally...

Components are (D, J_A, J_M) ,

 $J_A:A\to A$,

 $J_M:TM\to TM$,

 $D: \Gamma(A) \to \Gamma(T^*M \otimes A).$

Can analyze $\frac{1}{2}[J,J]=N_J\in\Omega^2(\mathcal{G},T\mathcal{G})$ infinitesimally...

E.g. holomorphic Lie groupoids \rightleftharpoons holomorphic Lie algebroids...

complex Lie group: Lie bracket complex bilinear

Components are (D, J_A, J_M) ,

 $J_A:A\to A$,

 $J_M:TM\to TM$,

 $D: \Gamma(A) \to \Gamma(T^*M \otimes A).$

Can analyze $\frac{1}{2}[J,J] = N_J \in \Omega^2(\mathcal{G},T\mathcal{G})$ infinitesimally...

E.g. holomorphic Lie groupoids \rightleftharpoons holomorphic Lie algebroids...

complex Lie group: Lie bracket complex bilinear holomorphic vector bundle: flat, partial T^{10} -connection

Components are (D, J_A, J_M) ,

 $J_A:A\to A$,

 $J_M: TM \rightarrow TM$,

 $D: \Gamma(A) \to \Gamma(T^*M \otimes A).$

Can analyze $\frac{1}{2}[J,J] = N_J \in \Omega^2(\mathcal{G},T\mathcal{G})$ infinitesimally...

E.g. holomorphic Lie groupoids \rightleftharpoons holomorphic Lie algebroids...

complex Lie group: Lie bracket complex bilinear holomorphic vector bundle: flat, partial T^{10} -connection

more: holomorphic symplectic/Poisson groupoids, almost product...

Thank you