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Motivation

Understand the work of Cartan on Lie Pseudogroups, and the
theory of PDE's using the language of Lie groupoids and Lie
algebroids.
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Definition of Pfaffian groupoid

A Pfaffian groupoid (G, #) consists of:
@ G = M Lie groupoid,
o 0 € QY(G, t*E) point-wise surjective, E — M € Rep(G), with
ker 8 N ker ds involutive,
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Definition of Pfaffian groupoid

Definition
A Pfaffian groupoid (G, #) consists of:
@ G = M Lie groupoid,
o 0 € QY(G, t*E) point-wise surjective, E — M € Rep(G), with
ker 8 N ker ds involutive,

with the property that 6 is multiplicative:

m Qg = & - Pri0(g,n) + Prabig.ns

maprlaprQ:g2Cng_’g-
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Examples

Example (Rotations on the plane)

For the standard action of S1 on R? by rotations, we have the
action groupoid over R?

G :=S'xR?,
s(a,z) =z, t(a,z) = - z, and

0 = da € QYG).
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Examples

Example (Rotations on the plane)

For the standard action of S1 on R? by rotations, we have the
action groupoid over R?

G :=S'xR?,
s(o,z) =z, t(a,z) = - z, and
0 = da € QYG).

A bisection 8 of G (i.e. 3:R? — G, so 3 = id and t o 3-diffeo)
belongs to

Sol(G,0) = {6 | B*6 = 0} iff a:R? — S!is constant.

Diff(R?) D MY = t 0 Sol(G, §) = {rotations of the plane}
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Examples

Example (Jet groupoids and the Cartan form)

For M a manifold, consider the pair groupoid M x M = M.
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Examples

Example (Jet groupoids and the Cartan form)

For M a manifold, consider the pair groupoid M x M = M.

G = JY(M x M) = { first jets of local diffeos (= bisections)}.
The Cartan form 6' € Q'(G; t*TM) at X € T, J'(M x M) is:

dpri(X) — dxg(dpra(X)).
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Examples

Example (Jet groupoids and the Cartan form)

For M a manifold, consider the pair groupoid M x M = M.

G = JY(M x M) = { first jets of local diffeos (= bisections)}.
The Cartan form 6' € Q'(G; t*TM) at X € T, J'(M x M) is:

dpri(X) — dxg(dpra(X)).

Sol(G,0Y) = {B: M — JL (M x M) | 3 =j*f,f alocal diffeo}
correspond to VB-iso F : TM — TM over f s.t F, = dxf.
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Definition of Lie-Prolongation

Let (G, 0) be a Pfaffian groupoid. A Lie-prolongation of (G, 6) is a
Pfaffian groupoid (G, 6’) together with a Lie groupoid morphism

p:(G',0)— (G,0), p surjective

Maria Amelia Salazar



Definition of Lie-Prolongation

Definition
Let (G, 0) be a Pfaffian groupoid. A Lie-prolongation of (G, 6) is a
Pfaffian groupoid (G, 6’) together with a Lie groupoid morphism

p:(G',0)— (G,0), p surjective

satisfying:
o 0’ takes values in the Lie algebroid A of G, and it is of
Lie-type:
ker @' N ker ds’ = ker &' N ker dt’,
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Definition of Lie-Prolongation

Definition
Let (G, 0) be a Pfaffian groupoid. A Lie-prolongation of (G, 6) is a
Pfaffian groupoid (G, 6’) together with a Lie groupoid morphism

p:(G',0)— (G,0), p surjective

satisfying:
o 0’ takes values in the Lie algebroid A of G, and it is of
Lie-type:
ker @' N ker ds’ = ker &' N ker dt’,

o Lie(p) =0'|a, A = Lie(G"),
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Definition of Lie-Prolongation

Definition
Let (G, 0) be a Pfaffian groupoid. A Lie-prolongation of (G, 6) is a
Pfaffian groupoid (G, 6’) together with a Lie groupoid morphism

p:(G',0)— (G,0), p surjective

satisfying:
o 0’ takes values in the Lie algebroid A of G, and it is of
Lie-type:
ker @' N ker ds’ = ker &' N ker dt’,
o Lie(p) =0|a, A = Lie(G"),
o dp(ker@') C ker6,
e for X, Y € ker®, 60(dp(X),dp(Y)) =0,

Maria Amelia Salazar



Definition of the Classical Lie-prolongation

Definition

The classical Lie-prolongation space P(G,#) of (G, 0) consists of
jiB € J1G with the property that for any X, Y € T, M

0(dB(X)) =0 and 86(dyB(X), dx(Y)) = 0.
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Definition of the Classical Lie-prolongation

The classical Lie-prolongation space P(G,#) of (G, 0) consists of
jiB € J1G with the property that for any X, Y € T, M

0(dB(X)) =0 and 86(dyB(X), dx(Y)) = 0.

| \

Proposition

Whenever P(G,0) C J1G smooth and pr: P(G,0) — G is a
submersion,

(P(G,0),0") = 6"|p(g.0))
is a Lie-prolongation of (G, 6).

Maria Amelia Salazar



Examples

Example (Rotations on the plane)

For G = S x R2, a bisection 0 R2 — G is of the form
B = (a,id), with (x,y) — - (x,y) a diffeo.

Maria Amelia Salazar



Example (Rotations on the plane)

For G = S x R2, a bisection 0 R2 — G is of the form
B = (o, id), with (x,y) — « - (x, y) a diffeo. For 6 = do,

. oo Oa
P(gvg) = {J(lx,y)ﬂ | akxd/) = 87y|(X7Y) = 0}
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Example (Rotations on the plane)

For G = S x R2, a bisection 0 R2 — G is of the form
B = (o, id), with (x,y) — « - (x, y) a diffeo. For 6 = do,

. oo Oa
'D(g)g) = {J(lx,y)ﬁ | akxd/) = 67y|(X7Y) = 0}

Example (Jet groupoid and the Cartan form)
For JY(M x M) and the Cartan form 6%,

P(JY(M x M), 6) = (M x M), and (6%)V) =62,

where J2(M x M) is the second jets of local diffeos, and 62 is the
Cartan form.

v
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Definition of Spencer operator

Let A— M be a Lie algebroid and let E € Rep(A) with associated
connection denoted by V.
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Definition of Spencer operator

Definition
Let A— M be a Lie algebroid and let E € Rep(A) with associated
connection denoted by V. A Spencer operator is a bilinear operator

D : (M) x [(A) — T(E), (X,a) — Dx(a)

together with a surjective V.B-map / : A — E, which is
C*°(M)-linear in X, satisfies the Leibniz identity relative to /:

Dx(fa) = Dx(a) + Lx(f)I(«),

Maria Amelia Salazar



Definition of Spencer operator

Definition
Let A— M be a Lie algebroid and let E € Rep(A) with associated
connection denoted by V. A Spencer operator is a bilinear operator

D : (M) x [(A) — T(E), (X,a) — Dx(a)

together with a surjective V.B-map / : A — E, which is
C*°(M)-linear in X, satisfies the Leibniz identity relative to /:

Dx(fa) = Dx(a) + Lx(f)I(«),
and the following two compatibility conditions:

Dp(ay (@) = Var (I(a)) + I([er, &])

Dx[Oé, Ozl] = Va(DXo/) = D[p(a)’x]a/ — Va/(DxOé)—l- D[p(a/))(]a.




Integrability result for Pfaffian groupoids

Theorem

Let E € Rep(G) and A = Lie(G). Then any multiplicative form
0 € QY(G, t*E), making (G, 0) Pfaffian, induces a Spencer operator
on A with coefficient on E, given by

Dx(a) = “Lar8(X)”, and I(a) = 0(a),

with the property that ker | C A is a Lie subalgebroid.
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Integrability result for Pfaffian groupoids

Theorem
Let E € Rep(G) and A = Lie(G). Then any multiplicative form

0 € QY(G, t*E), making (G, 0) Pfaffian, induces a Spencer operator
on A with coefficient on E, given by

Dx(a) = “Lar8(X)”, and I(a) = 0(a),

with the property that ker | C A is a Lie subalgebroid.
If G is source simply connected, then this construction defines a
1-1 correspondence.
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Examples

Example (Rotations on the plane)

The infinitesimal action of S ~ R? is defined by
a:R— X(R?),1— a(l)x,) = x% — y%.
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Examples

Example (Rotations on the plane)
The infinitesimal action of S ~ R? is defined by
a:R— X(R?),1— a(l)x,) = x% — y%.The induced action

algebroid is
Lie(S* x R?) = R x R2.

Maria Amelia Salazar



Examples

Example (Rotations on the plane)

The infinitesimal action of S ~ R? is defined by
a:R = :{.(R2)’ 1= a(1)(xy) = X% - y%.The induced action
algebroid is

Lie(S* x R?) = R x R2.
The associated Spencer operator D : R? x (R x R?) — C*°(RR?),
I:Rx R? — R x R? of da € Q}(S! x R?) is then

I(r) =r, and Dx(f) = fdf(X).
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Examples

Example (Jet algebroids and the classical Spencer Operator)

For a V.B A — M, one has a decomposition of vector spaces
M(J'A) ~ T(A) & QY(M, A),
coming from the exact sequence

0 T*MA— AR Ao
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Examples

Example (Jet algebroids and the classical Spencer Operator)

For a V.B A — M, one has a decomposition of vector spaces
F(J*A) ~ T(A) @ QY(M, A),
coming from the exact sequence
0= TMaA— AR Ao

The classical Spencer operator D5 : [(J'A) — Q1(M, A),
| = pr: J'A — Ais the projection to the 2nd component.
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Examples

Example (Jet algebroids and the classical Spencer Operator)

For a V.B A — M, one has a decomposition of vector spaces
F(J*A) ~ T(A) @ QY(M, A),
coming from the exact sequence
0= TMaA— AR Ao

The classical Spencer operator D5 : [(J'A) — Q1(M, A),
| = pr: J'A — Ais the projection to the 2nd component.

o If Ais a Lie algebroid DS is a Spencer Operator,

o if A= Lie(G), D55 is the Spencer Operator of the Cartan
form 0 € QY(G, t*A).
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Definition of compatible Spencer Operators

Let

D:x%(M)xT(A) —T(A), D:X(M)xT(A)—T(E)
1A — A I:A—E

be two Spencer Operators. (D’, D) are compatible if
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Definition of compatible Spencer Operators

Let

D:x%(M)xT(A) —T(A), D:X(M)xT(A)—T(E)
1A — A I:A—E

be two Spencer Operators. (D’, D) are compatible if

Dol—loD=0
DxDy — DyDx — I o Dx,y) =0
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Definition of compatible Spencer Operators

Let

D:x%(M)xT(A) —T(A), D:X(M)xT(A)—T(E)
1A — A I:A—E

be two Spencer Operators. (D’, D) are compatible if

Dol—loD=0
DxDy — DyDx — I o Dx,y) =0

@ /' is a Lie algebroid map.

Maria Amelia Salazar



Definition of the classical Lie prolongation

Definition

The classical Lie prolongation space Pp(A) of
D:XxT(A)—T(E), |:A— E, consists of elements
(a,w)x € JLA with the property that for any X, Y € X(M),

D(a)(x) = I(wx)

Dx(w(Y))(x) — Dy (w(X))(x) — I o w[X, Y] = 0.
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Whenever Pp(A) smooth and pr : Pp(A) — A surjective,
(Pp(A), DD = DY*|p, )

is compatible with D.
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Whenever Pp(A) smooth and pr : Pp(A) — A surjective,
(Pp(A), DD = DY*|p, )

is compatible with D. If D is the Spencer operator of (G, 6), then
P(G, ) is smooth iff Pp(A) is smooth, and

Lie(P(G,60)) = Pp(A).
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Integrability result for Lie-Prolongations

Let G' be Lie groupoid, and (G, 0) a Pfaffian groupoid, and let
D : X(M) x T(A) — T'(E) be the Spencer Operator of (G,0).
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Integrability result for Lie-Prolongations

Theorem

Let G' be Lie groupoid, and (G, 0) a Pfaffian groupoid, and let

D : X(M) x T(A) — ['(E) be the Spencer Operator of (G, 0). If G
is s-simply connected and G s-connected, then there is a 1-1
correspondence

e Lie prolongations p : (G',6') — (G,0), and

e Spencer operators D : X(M) x ['(A") — ['(A) compatible with
D.

In this correspondence D’ is the Spencer Operator of 0'.
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Maurer-Cartan equation

Out of D : X(M) x T(A) — I'(E), one has an antysimmetric
bilinear map

1
{'a '}D AXA—E, E{O‘aﬁ}D = Dp(a)(ﬁ) - Dp(ﬁ)(a) - /[avﬁ]
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Maurer-Cartan equation

Out of D : X(M) x T(A) — I'(E), one has an antysimmetric
bilinear map

1
{'a '}D AXA—E, E{aaﬁ}D = Dp(a)(ﬁ) - Dp(ﬁ)(a) - /[aaﬁ]
and a differential operator
dp : QYG', t*A) — Q*(G', t*E),

dpt(X,Y) = DL(0'(Y)) — DL('(X)) — I(0'[X, Y]), where Dt is
the pullback of D via t: G — M.

Maria Amelia Salazar



Maurer-Cartan equation

Out of D : X(M) x T(A) — I'(E), one has an antysimmetric
bilinear map

1
{'a '}D AXA—E, E{aaﬁ}D = Dp(a)(ﬁ) - Dp(ﬁ)(a) - /[aaﬁ]
and a differential operator
dp : QYG', t*A) — Q*(G', t*E),

dpt(X,Y) = DL(0'(Y)) — DL('(X)) — I(0'[X, Y]), where Dt is
the pullback of D via t: G — M.

1
MC(',0) = dpt/ — 2{0/.0'}p.
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Lie Prolongations and MC

If

p:(G.0") —(G.9)

is a Lie Prolongation then

MC(¢',6) = 0.
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Lie Prolongations and MC

Theorem

p:(G,0)—(G,0)
is a Lie Prolongation then
MC(¢',6) = 0.

If G' is s-connected and p is a submersion with Lie(p) = 0’|, then
the converse also holds.

v
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Thank you

Thank you for your attention.
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