Pfaffian groupoids

María Amelia Salazar

CRM, Barcelona

December 10, 2013

Motivation

Understand the work of Cartan on Lie Pseudogroups, and the theory of PDE's using the language of Lie groupoids and Lie algebroids.

Definition of Pfaffian groupoid

Definition

A Pfaffian groupoid (\mathcal{G}, θ) consists of:

- $\mathcal{G} \rightrightarrows M$ Lie groupoid,
- $\theta \in \Omega^1(\mathcal{G}, t^*E)$ point-wise surjective, $E \to M \in \operatorname{Rep}(\mathcal{G})$, with $\ker \theta \cap \ker ds$ involutive,

Definition of Pfaffian groupoid

Definition

A Pfaffian groupoid (\mathcal{G}, θ) consists of:

- $\mathcal{G} \rightrightarrows M$ Lie groupoid.
- $\theta \in \Omega^1(\mathcal{G}, t^*E)$ point-wise surjective, $E \to M \in \text{Rep}(\mathcal{G})$, with $\ker \theta \cap \ker ds$ involutive.

with the property that θ is multiplicative:

$$m^*\theta_{(g,h)} = g \cdot pr_1^*\theta_{(g,h)} + pr_2^*\theta_{(g,h)},$$

$$m, pr_1, pr_2 : \mathcal{G}_2 \subset \mathcal{G} \times \mathcal{G} \rightarrow \mathcal{G}.$$

Example (Rotations on the plane)

For the standard action of S^1 on \mathbb{R}^2 by rotations, we have the action groupoid over \mathbb{R}^2

$$\mathcal{G}:=\mathcal{S}^1\ltimes\mathbb{R}^2,$$

$$s(\alpha, z) = z, t(\alpha, z) = \alpha \cdot z$$
, and

$$\theta = d\alpha \in \Omega^1(\mathcal{G}).$$

Examples

Example (Rotations on the plane)

For the standard action of S^1 on \mathbb{R}^2 by rotations, we have the action groupoid over \mathbb{R}^2

$$\mathcal{G} := \mathcal{S}^1 \ltimes \mathbb{R}^2$$
,

$$s(\alpha,z)=z, t(\alpha,z)=\alpha\cdot z$$
, and

$$\theta = d\alpha \in \Omega^1(\mathcal{G}).$$

A bisection β of \mathcal{G} (i.e. $\beta: \mathbb{R}^2 \to \mathcal{G}$, $s \circ \beta = id$ and $t \circ \beta$ -diffeo) belongs to

$$\operatorname{Sol}(\mathcal{G}, \theta) = \{\beta \mid \beta^* \theta = 0\} \quad \text{iff} \quad \alpha : \mathbb{R}^2 \to S^1 \text{ is constant.}$$

 $Diff(\mathbb{R}^2) \supset \Gamma^{naive} = t \circ Sol(\mathcal{G}, \theta) = \{rotations \text{ of the plane}\}\$

Maurer-Cartan

Examples

Example (Jet groupoids and the Cartan form)

For M a manifold, consider the pair groupoid $M \times M \rightrightarrows M$.

Examples

Example (Jet groupoids and the Cartan form)

For M a manifold, consider the pair groupoid $M \times M \rightrightarrows M$.

$$G = J^1(M \times M) = \{ \text{ first jets of local diffeos } (= \text{bisections}) \}.$$

The Cartan form $\theta^1 \in \Omega^1(\mathcal{G}; t^*TM)$ at $X \in T_{i^1; \phi}J^1(M \times M)$ is:

$$dpr_1(X) - d_X\phi(dpr_2(X)).$$

Examples

Example (Jet groupoids and the Cartan form)

For M a manifold, consider the pair groupoid $M \times M \rightrightarrows M$.

$$G = J^1(M \times M) = \{ \text{ first jets of local diffeos } (= \text{bisections}) \}.$$

The Cartan form $\theta^1 \in \Omega^1(\mathcal{G}; t^*TM)$ at $X \in T_{i^1; \phi}J^1(M \times M)$ is:

$$dpr_1(X) - d_X\phi(dpr_2(X)).$$

 $Sol(\mathcal{G}, \theta^1) = \{\beta : M \to J^1(M \times M) \mid \beta = j^1 f, f \text{ a local diffeo} \}$

correspond to VB-iso $F: TM \to TM$ over f s.t $F_x = d_x f$.

Definition of Lie-Prolongation

Definition

Let (\mathcal{G}, θ) be a Pfaffian groupoid. A Lie-prolongation of (\mathcal{G}, θ) is a Pfaffian groupoid (\mathcal{G}', θ') together with a Lie groupoid morphism

$$p:(\mathcal{G}',\theta') \to (\mathcal{G},\theta), \ \ p \ \text{surjective}$$

Definition

Let (\mathcal{G}, θ) be a Pfaffian groupoid. A Lie-prolongation of (\mathcal{G}, θ) is a Pfaffian groupoid (\mathcal{G}', θ') together with a Lie groupoid morphism

$$p: (\mathcal{G}', \theta') \to (\mathcal{G}, \theta), p \text{ surjective}$$

satisfying:

• θ' takes values in the Lie algebroid A of \mathcal{G} , and it is of Lie-type:

$$\ker \theta' \cap \ker ds' = \ker \theta' \cap \ker dt'$$
,

Definition of Lie-Prolongation

Definition

Let (\mathcal{G}, θ) be a Pfaffian groupoid. A Lie-prolongation of (\mathcal{G}, θ) is a Pfaffian groupoid (\mathcal{G}', θ') together with a Lie groupoid morphism

$$p: (\mathcal{G}', \theta') \to (\mathcal{G}, \theta), p \text{ surjective}$$

satisfying:

• θ' takes values in the Lie algebroid A of \mathcal{G} , and it is of Lie-type:

$$\ker \theta' \cap \ker ds' = \ker \theta' \cap \ker dt'$$
,

• $Lie(p) = \theta'|_{A'}$, $A' = Lie(\mathcal{G}')$.

Compatible S.O.

Definition of Lie-Prolongation

Definition

Let (\mathcal{G}, θ) be a Pfaffian groupoid. A Lie-prolongation of (\mathcal{G}, θ) is a Pfaffian groupoid (\mathcal{G}', θ') together with a Lie groupoid morphism

$$p:(\mathcal{G}', heta') o(\mathcal{G}, heta),\ \ p$$
 surjective

satisfying:

• θ' takes values in the Lie algebroid A of \mathcal{G} , and it is of Lie-type:

$$\ker \theta' \cap \ker ds' = \ker \theta' \cap \ker dt'$$
,

- $Lie(p) = \theta'|_{A'}$, $A' = Lie(\mathcal{G}')$,
- $dp(\ker \theta') \subset \ker \theta$.
- for $X, Y \in \ker \theta'$, $\delta\theta(dp(X), dp(Y)) = 0$,

Definition of the Classical Lie-prolongation

Definition

The classical Lie-prolongation space $P(\mathcal{G}, \theta)$ of (\mathcal{G}, θ) consists of $j_x^1 \beta \in J^1 \mathcal{G}$ with the property that for any $X, Y \in T_x M$

$$\theta(d_x\beta(X)) = 0$$
 and $\delta\theta(d_x\beta(X), d_x\beta(Y)) = 0$.

Definition of the Classical Lie-prolongation

Definition

The classical Lie-prolongation space $P(\mathcal{G}, \theta)$ of (\mathcal{G}, θ) consists of $i^1\beta \in J^1\mathcal{G}$ with the property that for any $X,Y \in T_xM$

$$\theta(d_x\beta(X)) = 0$$
 and $\delta\theta(d_x\beta(X), d_x\beta(Y)) = 0$.

Proposition

Whenever $P(\mathcal{G}, \theta) \subset J^1\mathcal{G}$ smooth and $pr : P(\mathcal{G}, \theta) \to \mathcal{G}$ is a submersion.

$$(P(\mathcal{G},\theta),\theta^{(1)}=\theta^1|_{P(\mathcal{G},\theta)})$$

is a Lie-prolongation of (\mathcal{G}, θ) .

Pfaffian groupoids

Example (Rotations on the plane)

For $\mathcal{G}=S^1\ltimes R^2$, a bisection $\beta:\mathbb{R}^2\to\mathcal{G}$ is of the form $\beta=(\alpha,id),$ with $(x,y)\mapsto \alpha\cdot(x,y)$ a diffeo.

Pfaffian groupoids

Example (Rotations on the plane)

For $\mathcal{G}=S^1\ltimes R^2$, a bisection $\beta:\mathbb{R}^2\to\mathcal{G}$ is of the form $\beta=(\alpha,id)$, with $(x,y)\mapsto\alpha\cdot(x,y)$ a diffeo. For $\theta=d\alpha$,

$$P(\mathcal{G}, \theta) = \{ j_{(x,y)}^1 \beta \mid \frac{\partial \alpha}{\partial x} |_{(x,y)} = \frac{\partial \alpha}{\partial y} |_{(x,y)} = 0 \}$$

Example (Rotations on the plane)

For $\mathcal{G} = S^1 \ltimes R^2$, a bisection $\beta : \mathbb{R}^2 \to \mathcal{G}$ is of the form $\beta = (\alpha, id)$, with $(x, y) \mapsto \alpha \cdot (x, y)$ a diffeo. For $\theta = d\alpha$,

$$P(\mathcal{G}, \theta) = \{j_{(x,y)}^1 \beta \mid \frac{\partial \alpha}{\partial x} |_{(x,y)} = \frac{\partial \alpha}{\partial y} |_{(x,y)} = 0\}$$

Example (Jet groupoid and the Cartan form)

For $J^1(M \times M)$ and the Cartan form θ^1 ,

$$P(J^{1}(M \times M), \theta^{1}) = J^{2}(M \times M), \text{ and } (\theta^{1})^{(1)} = \theta^{2},$$

where $J^2(M \times M)$ is the second jets of local diffeos, and θ^2 is the Cartan form.

Pfaffian groupoids Lie-Prolongations Spencer Operators Compatible S.O. Maurer-Cartan

Definition of Spencer operator

Definition

Let $A \to M$ be a Lie algebroid and let $E \in \text{Rep}(A)$ with associated connection denoted by ∇ .

Definition of Spencer operator

Definition

Let $A \to M$ be a Lie algebroid and let $E \in \text{Rep}(A)$ with associated connection denoted by ∇ . A Spencer operator is a bilinear operator

$$D: \mathfrak{X}(M) \times \Gamma(A) \to \Gamma(E), \ (X,\alpha) \mapsto D_X(\alpha)$$

together with a surjective V.B-map $I: A \to E$, which is $C^{\infty}(M)$ -linear in X, satisfies the Leibniz identity relative to I:

$$D_X(f\alpha) = fD_X(\alpha) + L_X(f)I(\alpha),$$

Definition of Spencer operator

Definition

Let $A \to M$ be a Lie algebroid and let $E \in \text{Rep}(A)$ with associated connection denoted by ∇ . A Spencer operator is a bilinear operator

$$D: \mathfrak{X}(M) \times \Gamma(A) \to \Gamma(E), \ (X,\alpha) \mapsto D_X(\alpha)$$

together with a surjective V.B-map $I: A \to E$, which is $C^{\infty}(M)$ -linear in X, satisfies the Leibniz identity relative to I:

$$D_X(f\alpha) = fD_X(\alpha) + L_X(f)I(\alpha),$$

and the following two compatibility conditions:

$$D_{\rho(\alpha)}(\alpha') = \nabla_{\alpha'}(I(\alpha)) + I([\alpha, \alpha'])$$

$$D_X[\alpha,\alpha'] = \nabla_{\alpha}(D_X\alpha') - D_{[\rho(\alpha),X]}\alpha' - \nabla_{\alpha'}(D_X\alpha) + D_{[\rho(\alpha'),X]}\alpha.$$

Theorem

Let $E \in Rep(\mathcal{G})$ and $A = Lie(\mathcal{G})$. Then any multiplicative form $\theta \in \Omega^1(\mathcal{G}, t^*E)$, making (\mathcal{G}, θ) Pfaffian, induces a Spencer operator on A with coefficient on E, given by

$$D_X(\alpha) = "L_{\alpha'}\theta(X)"$$
, and $I(\alpha) = \theta(\alpha)$,

with the property that $\ker I \subset A$ is a Lie subalgebroid.

Theorem

Let $E \in Rep(\mathcal{G})$ and $A = Lie(\mathcal{G})$. Then any multiplicative form $\theta \in \Omega^1(\mathcal{G}, t^*E)$, making (\mathcal{G}, θ) Pfaffian, induces a Spencer operator on A with coefficient on E, given by

$$D_X(\alpha) = "L_{\alpha'}\theta(X)"$$
, and $I(\alpha) = \theta(\alpha)$,

with the property that ker $I \subset A$ is a Lie subalgebroid. If G is source simply connected, then this construction defines a 1-1 correspondence.

Example (Rotations on the plane)

The infinitesimal action of $S^1 \curvearrowright \mathbb{R}^2$ is defined by $a : \mathbb{R} \to \mathfrak{X}(\mathbb{R}^2), 1 \mapsto a(1)_{(x,y)} = x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x}$.

Example (Rotations on the plane)

The infinitesimal action of $S^1 \curvearrowright \mathbb{R}^2$ is defined by $a: \mathbb{R} \to \mathfrak{X}(\mathbb{R}^2), 1 \mapsto a(1)_{(x,y)} = x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x}$. The induced action algebroid is

$$Lie(S^1 \ltimes \mathbb{R}^2) = \mathbb{R} \ltimes \mathbb{R}^2.$$

Examples

Example (Rotations on the plane)

The infinitesimal action of $S^1 \curvearrowright \mathbb{R}^2$ is defined by $a: \mathbb{R} \to \mathfrak{X}(\mathbb{R}^2), 1 \mapsto a(1)_{(x,y)} = x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x}$. The induced action algebroid is

$$Lie(S^1 \ltimes \mathbb{R}^2) = \mathbb{R} \ltimes \mathbb{R}^2$$
.

The associated Spencer operator $D: \mathbb{R}^2 \times \Gamma(\mathbb{R} \ltimes \mathbb{R}^2) \to C^{\infty}(\mathbb{R}^2)$, $I: \mathbb{R} \ltimes \mathbb{R}^2 \to \mathbb{R} \times \mathbb{R}^2$ of $d\alpha \in \Omega^1(S^1 \ltimes R^2)$ is then

$$I(r) = r$$
, and $D_X(f) = fdf(X)$.

Compatible S.O.

Example (Jet algebroids and the classical Spencer Operator)

For a V.B $A \rightarrow M$, one has a decomposition of vector spaces

$$\Gamma(J^1A) \simeq \Gamma(A) \oplus \Omega^1(M,A),$$

coming from the exact sequence

$$0 \to T^*M \otimes A \to J^1A \stackrel{pr}{\to} A \to 0.$$

Examples

Example (Jet algebroids and the classical Spencer Operator)

For a V.B $A \rightarrow M$, one has a decomposition of vector spaces

$$\Gamma(J^1A)\simeq\Gamma(A)\oplus\Omega^1(M,A),$$

coming from the exact sequence

$$0 \to T^*M \otimes A \to J^1A \xrightarrow{pr} A \to 0.$$

The classical Spencer operator $D^{clas}: \Gamma(J^1A) \to \Omega^1(M,A)$, $I = pr : J^1A \rightarrow A$ is the projection to the 2nd component.

Examples

Example (Jet algebroids and the classical Spencer Operator)

For a V.B $A \rightarrow M$, one has a decomposition of vector spaces

$$\Gamma(J^1A)\simeq\Gamma(A)\oplus\Omega^1(M,A),$$

coming from the exact sequence

Lie-Prolongations

$$0 \to T^*M \otimes A \to J^1A \stackrel{pr}{\to} A \to 0.$$

The classical Spencer operator $D^{clas}: \Gamma(J^1A) \to \Omega^1(M,A)$, $I = pr : J^1 A \rightarrow A$ is the projection to the 2nd component.

- If A is a Lie algebroid D^{clas} is a Spencer Operator.
- if $A = Lie(\mathcal{G})$, D^{clas} is the Spencer Operator of the Cartan form $\theta^1 \in \Omega^1(\mathcal{G}, t^*A)$.

Definition of compatible Spencer Operators

Definition

Let

$$\tilde{D}:\mathfrak{X}(M)\times\Gamma(A')\to\Gamma(A),\qquad D:\mathfrak{X}(M)\times\Gamma(A)\to\Gamma(E)$$

 $\tilde{I}:A'\to A$ $I:A\to E$

be two Spencer Operators. (D', D) are compatible if

Definition

Let

•

$$\tilde{D}:\mathfrak{X}(M) imes\Gamma(A') o\Gamma(A), \qquad D:\mathfrak{X}(M) imes\Gamma(A) o\Gamma(E) \ \tilde{I}:A' o A \qquad \qquad I:A o E$$

be two Spencer Operators. (D', D) are compatible if

$$D \circ \tilde{I} - I \circ \tilde{D} = 0$$

$$D_X \tilde{D}_Y - D_Y \tilde{D}_X - I \circ \tilde{D}_{[X,Y]} = 0$$

Definition of compatible Spencer Operators

Definition

Let

Pfaffian groupoids

$$ilde{D}: \mathfrak{X}(M) \times \Gamma(A') \to \Gamma(A), \qquad D: \mathfrak{X}(M) \times \Gamma(A) \to \Gamma(E)$$

 $ilde{I}: A' \to A \qquad \qquad I: A \to E$

be two Spencer Operators. (D', D) are compatible if

•

$$D \circ \tilde{I} - I \circ \tilde{D} = 0$$
$$D_X \tilde{D}_Y - D_Y \tilde{D}_X - I \circ \tilde{D}_{[X,Y]} = 0$$

• I' is a Lie algebroid map.

Definition

The classical Lie prolongation space $P_D(A)$ of

 $D: \mathfrak{X} \times \Gamma(A) \to \Gamma(E)$, $I: A \to E$, consists of elements $(\alpha, \omega)_x \in J^1A$ with the property that for any $X, Y \in \mathfrak{X}(M)$,

$$D(\alpha)(x) = I(\omega_x)$$

$$D_X(\omega(Y))(x) - D_Y(\omega(X))(x) - I \circ \omega[X, Y]_x = 0.$$

Proposition

Whenever $P_D(A)$ smooth and $pr: P_D(A) \rightarrow A$ surjective,

$$(P_D(A), D^{(1)} = D^{clas}|_{P_D(A)})$$

is compatible with D.

Lie-Prolongations

Proposition

Whenever $P_D(A)$ smooth and $pr: P_D(A) \rightarrow A$ surjective,

$$(P_D(A), D^{(1)} = D^{clas}|_{P_D(A)})$$

is compatible with D. If D is the Spencer operator of (\mathcal{G}, θ) , then $P(\mathcal{G}, \theta)$ is smooth iff $P_D(A)$ is smooth, and

$$Lie(P(G, \theta)) = P_D(A).$$

Integrability result for Lie-Prolongations

Theorem

Let \mathcal{G}' be Lie groupoid, and (\mathcal{G}, θ) a Pfaffian groupoid, and let $D: \mathfrak{X}(M) \times \Gamma(A) \to \Gamma(E)$ be the Spencer Operator of (\mathcal{G}, θ) .

Integrability result for Lie-Prolongations

$\mathsf{Theorem}$

Pfaffian groupoids

Let \mathcal{G}' be Lie groupoid, and (\mathcal{G}, θ) a Pfaffian groupoid, and let $D: \mathfrak{X}(M) \times \Gamma(A) \to \Gamma(E)$ be the Spencer Operator of (\mathcal{G}, θ) . If \mathcal{G}' is s-simply connected and G s-connected, then there is a 1-1 correspondence

- Lie prolongations $p:(\mathcal{G}',\theta')\to(\mathcal{G},\theta)$, and
- Spencer operators $D: \mathfrak{X}(M) \times \Gamma(A') \to \Gamma(A)$ compatible with D.

In this correspondence D' is the Spencer Operator of θ' .

Maurer-Cartan equation

Pfaffian groupoids

Out of $D: \mathfrak{X}(M) \times \Gamma(A) \to \Gamma(E)$, one has an antysimmetric bilinear map

$$\{\cdot,\cdot\}_D: A\times A\to E, \quad \frac{1}{2}\{\alpha,\beta\}_D=D_{\rho(\alpha)}(\beta)-D_{\rho(\beta)}(\alpha)-I[\alpha,\beta]$$

Pfaffian groupoids

Out of $D: \mathfrak{X}(M) \times \Gamma(A) \to \Gamma(E)$, one has an antysimmetric bilinear map

$$\{\cdot,\cdot\}_D:A\times A\to E,\ \frac{1}{2}\{\alpha,\beta\}_D=D_{\rho(\alpha)}(\beta)-D_{\rho(\beta)}(\alpha)-I[\alpha,\beta]$$

and a differential operator

$$d_D:\Omega^1(\mathcal{G}',t^*A)\to\Omega^2(\mathcal{G}',t^*E),$$

 $d_D\theta'(X,Y) = D_X^t(\theta'(Y)) - D_Y^t(\theta'(X)) - I(\theta'[X,Y])$, where D^t is the pullback of D via $t: \mathcal{G}' \to M$.

Maurer-Cartan equation

Lie-Prolongations

Out of $D: \mathfrak{X}(M) \times \Gamma(A) \to \Gamma(E)$, one has an antysimmetric bilinear map

$$\{\cdot,\cdot\}_D: A\times A\to E, \quad \frac{1}{2}\{\alpha,\beta\}_D=D_{\rho(\alpha)}(\beta)-D_{\rho(\beta)}(\alpha)-I[\alpha,\beta]$$

and a differential operator

$$d_D:\Omega^1(\mathcal{G}',t^*A)\to\Omega^2(\mathcal{G}',t^*E),$$

 $d_D\theta'(X,Y) = D_X^t(\theta'(Y)) - D_Y^t(\theta'(X)) - I(\theta'[X,Y])$, where D^t is the pullback of D via $t: \mathcal{G}' \to M$.

$$MC(\theta',\theta) := d_D\theta' - \frac{1}{2}\{\theta',\theta'\}_D.$$

Lie Prolongations and MC

Theorem

Ιf

$$p: (\mathcal{G}', \theta') \to (\mathcal{G}, \theta)$$

is a Lie Prolongation then

$$MC(\theta',\theta)=0.$$

Lie Prolongations and MC

Theorem

lf

$$p: (\mathcal{G}', \theta') \to (\mathcal{G}, \theta)$$

is a Lie Prolongation then

$$MC(\theta',\theta)=0.$$

If \mathcal{G}' is s-connected and p is a submersion with $Lie(p) = \theta'|_{A'}$, then the converse also holds.

Thank you

Thank you for your attention.