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Nonuniform Faults in Networks

How do failures patterns look like? depends...

⇓
What is the cause for failures? depends...

⇓
What does the network represent?
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Nonuniform Faults in Networks (Example 1)

Distributed Computer Systems

Many processes running on various physical machines, using
various resources (databases, powerful machines etc.)

Faults: downtime of resources.

Similar characteristics in networks representing

Health care facilities

Digitally controlled infrastructures

Hierarchical organizations

...
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Nonuniform Faults in Networks (Example 2)

Financial Investment Networks

Many companies in a market with mutual dependencies
(investment, supply etc.)

Faults: bankruptcy of companies ⇒ Causes cascades!

Similar characteristics in networks representing

Electricity networks

Insurance networks

Social networks

...
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Nonuniform Faults in Networks

Scenario Sets Ω ⊂ 2N that feature

Simultaneous failure of variable-size parts of the network

Failure of a single resource that causes failure of multiple
network components

Propagation effects

Certainly,

Ω 6= {A ⊂ N : w(A) ≤ k} = “Uniform”
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Nonuniform Models - Bulk Robustness

Combinatorial (covering) problem P:

min{c(X ) : X ∈ S} (S ⊂ 2N feasible set, c : N → Z+)

Scenario set:

Ω = {F1, · · · ,Fm} (F1, · · · ,Fm ⊂ N scenarios)

Bulk-Robust counterpart Bulk(P):

min{c(X ) : X \ Fi ∈ S ∀Fi ∈ Ω}
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Example - Bulk(Spanning Tree)

min{c(X ) : (V , X \ Fi) is connected ∀Fi ∈ Ω}
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Properties of Bulk(P)

Bulk(P) can model arbitrary failure types

⇒ e.g. edge-sets failures, vertex-sets failures...

Bulk(P) instance feasible iff N \ F ∈ S for all F ∈ Ω.

β-approximation for P implies a |Ω|β-approximation for
Bulk(P):

Compute β-approximate solution XF for relaxation

min{c(X ) : X \ F ∈ S}

Return X =
⋃

F∈Ω XF
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Bulk(P) and Set Cover

Let N = {1, · · · , n} and PU : min{c(X ) : X ⊂ N, |X | ≥ 1}

⇒ Bulk(PU) ≡ Set Cover

⇒ Bulk(Spanning Tree), Bulk(Shortest Path), etc. unlikely to
admit polynomial constant-factor approximation algorithms

(not better than ln |Ω|)

At the same time, e.g., Bulk(Set Cover) ≈ Set Cover

Bulk(Shortest Path)? Bulk(Spanning Tree)?
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Bulk(Spanning Tree)

Theorem. There is a polynomial (log |Ω|+ log r)-approximation
algorithm for Bulk(Minimum Matroid Basis).

⇒ (log |Ω|+ log |V |)-approximation for Bulk(Spanning Tree).

Proof sketch:

Let r(·) denote the rank function of the matroid M.

For F ∈ Ω define rF (X ) = r(X \ F ). ⇒ Submodular

Define:

f (X ) =
∑
F∈Ω

rF (X ) ⇒ Submodular

Note: S ⊂ N feasible iff f (S) = f (N) = r(M)|Ω|
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Let r(·) denote the rank function of the matroid M.

For F ∈ Ω define rF (X ) = r(X \ F ). ⇒ Submodular

Define:

f (X ) =
∑
F∈Ω

rF (X ) ⇒ Submodular

Note: S ⊂ N feasible iff f (S) = f (N) = r(M)|Ω|
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Bulk(Spanning Tree)

Proof sketch (cont.): f (X ) =
∑

F∈Ω rF (X ) =
∑

F∈Ω r(X \ F )

Try to maximize f without paying more than OPT .

max{f (X ) : c(X ) ≤ OPT}

⇒ Submodular Function maximization with knapsack constraint

NP-hard, but constant-factor approximations exist
e.g. 1− 1

e − ε [Kulik, Shachnai, Tamir 10’]

⇒ Obtain a set Y1 with

f (Y1) ≥ (1− α)r(M)|Ω| for some α ∈ (0, 1)

c(Y1) ≤ OPT

Iterate...
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Bulk(Spanning Tree)

Proof sketch (cont.):

Update N: N ′ = N \ Y1

Update f : f ′(X ) =
∑

F∈Ω

[
rF (X ∪ Y1)− rF (Y1)

]
(Contraction operation...)

⇒ Resolve approximately SFM problem to obtain Y2 with

f (Y1 ∪ Y2) ≥ (1− α2)r(M)|Ω|
c(Y1 ∪ Y2) ≤ 2OPT .

... after O(log r(M)|Ω|) iterations the solution is feasible!

OPT can be replaced with any T ≤ OPT (binary search)
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Bulk(Shortest Path)

Bulk(Shortest Path) can be even harder:

Steiner Forest can be modeled as Bulk(Shortest Path)

⇒ No O(2log1−ε |V |)-approximations for directed graphs.

However: when k = maxF∈Ω |F | bounded

Theorem. Bulk(Shortest Path) is

polynomial when k ≤ 1.

APX-complete when k = 2.

O(k log |Ω|)-approximable when k = O(log |V |) (Undir.).
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Bulk(Shortest Path) can be even harder:

Steiner Forest can be modeled as Bulk(Shortest Path)

⇒ No O(2log1−ε |V |)-approximations for directed graphs.

However: when t = maxF∈Ω |F | bounded

Theorem. Bulk(Shortest Path)

polynomial when t ≤ 1.

admits a polynomial 13-apx when k = 2.

O(t log |Ω|)-approximable when t = O(log |V |) (Undir.).
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Bulk(Shortest Path)

Proof sketch.
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Lemma 1. When k = 1 a minimal feasible solution is a “simple”
union of two s-t paths.
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Bulk(Shortest Path)

Proof sketch. (G undirected)

Lemma 1. When k = 1 a minimal feasible solution is a “simple”
union of two s-t paths.

s t

Step 1: Solve for Ω1 = {{e} ⊂ E : ∃F ∈ Ω : e ∈ F} ⇒ S1

⇒ c(S1) ≤ OPT

⇒ If F ∈ Ω is an s-t in S1 then F is contained in a simple cycle.
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Bulk(Shortest Path)

Proof sketch (cont.)
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Bulk(Shortest Path)

Proof sketch (cont.)

Lemma 2. Minimal X such that X ∪ S1 is feasible is a forest.
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Proof sketch (cont.)

Lemma 2. Minimal X such that X ∪ S1 is feasible is a forest.

(Call such X an augmenting set)
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Bulk(Shortest Path)

Proof sketch (cont.)

Lemma 2. Minimal X such that X ∪ S1 is feasible is a forest.

(Call such X an augmenting set)

Lemma 3. Let X be an augmenting set. There exist paths
P1, · · · ,Pk ⊂ E such that

∀F ∈ Ω ∃i ∈ [k] such that F is not an s-t cut in S1 ∪ Pi .

c(P1) + · · ·+ c(Pk) ≤ 2c(X ).
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Proof sketch (cont.)

Lemma 2. Minimal X such that X ∪ S1 is feasible is a forest.

(Call such X an augmenting set)

Lemma 3. Let X be an augmenting set. There exist paths
P1, · · · ,Pk ⊂ E such that

∀F ∈ Ω ∃i ∈ [k] such that F is not an s-t cut in S1 ∪ Pi .

c(P1) + · · ·+ c(Pk) ≤ 2c(X ).

Furthermore, Pi can be replaced by any shortest path between its
endpoints.
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Bulk(Shortest Path)

Proof sketch (cont.)

Lemma 2. Minimal X such that X ∪ S1 is feasible is a forest.

(Call such X an augmenting set)

Lemma 3. Let X be an augmenting set. There exist paths
P1, · · · ,Pk ⊂ E such that

∀F ∈ Ω ∃i ∈ [k] such that F is not an s-t cut in S1 ∪ Pi .

c(P1) + · · ·+ c(Pk) ≤ 2c(X ).

Furthermore, Pi can be replaced by any shortest path between its
endpoints.

Step 2: Compute shortest paths Qu,v for all u, v ∈ V [S1]
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Proof sketch (cont.)

Lemma 2. Minimal X such that X ∪ S1 is feasible is a forest.

(Call such X an augmenting set)

Lemma 3. Let X be an augmenting set. There exist paths
P1, · · · ,Pk ⊂ E such that

∀F ∈ Ω ∃i ∈ [k] such that F is not an s-t cut in S1 ∪ Pi .

c(P1) + · · ·+ c(Pk) ≤ 2c(X ).

Furthermore, Pi can be replaced by any shortest path between its
endpoints.

Step 2: Compute shortest paths Qu,v for all u, v ∈ V [S1]

⇒ Solve Set Cover problem (⇒ O(log n)-apx)
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Proof sketch (cont.)
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⇒ Want a O(1)-apx for that Set Cover problem
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Proof sketch (cont.)

⇒ Want a O(1)-apx for that Set Cover problem

Step 3: “Unfold” S1 into two disjoint paths.
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Proof sketch (cont.)

⇒ Want a O(1)-apx for that Set Cover problem

Step 3: “Unfold” S1 into two disjoint paths.

s t

f1

f2

F = {f1, f2}
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Bulk(Shortest Path)

Proof sketch (cont.)

⇒ Want a O(1)-apx for that Set Cover problem

Step 3: “Unfold” S1 into two disjoint paths.

f2

f1

Q1

Q2
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Bulk(Shortest Path)

Proof sketch (cont.)

⇒ Want a O(1)-apx for that Set Cover problem

Step 3: “Unfold” S1 into two disjoint paths.

f2

f1

Q2

Q1

Q4Q3
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Proof sketch (cont.)
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Proof sketch (cont.)

Every path in S1 defines an ordering of Ω,
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Proof sketch (cont.)

Every path in S1 defines an ordering of Ω, but...

f2

f1 f ′1

f ′2

David Adjiashvili Nonuniform Models for Robust Network Design



Bulk(Shortest Path)

Proof sketch (cont.)

Every path in S1 defines an ordering of Ω, but...

f2

f1 f ′1

f ′2

Q

Restricted to such paths Q - Interval cover!
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Every path in S1 defines an ordering of Ω, but...

f2

f1 f ′1

f ′2
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Proof sketch (cont.)

Every path in S1 defines an ordering of Ω, but...

f2

f1 f ′1

f ′2

Q

Q

Restricted to such paths Q...
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Bulk(Shortest Path)

Proof sketch (cont.)

Every path in S1 defines an ordering of Ω, but...

f2

f1

Q

f ′1

f ′2

Q

Restricted to such paths Q... also Interval cover!
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Proof sketch (cont.)

Every path in S1 defines an ordering of Ω, but...

f2

f1

Q

f ′1

f ′2

Q

Which scenarios F to cover with which paths?
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Bulk(Shortest Path)

Proof sketch (cont.)

Every path in S1 defines an ordering of Ω, but...

f2

f1

Q

f ′1

f ′2

Q

Which scenarios F to cover with which paths? Ask the LP!
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Proof sketch (cont.)
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Proof sketch (cont.)

Step 4: Solve

min
{∑

u,v∈V c(Qu,v )xu,v :
∑

F×(u,v) xu,v ≥ 1 ∀F ∈ Ω
}
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Bulk(Shortest Path)

Proof sketch (cont.)

Step 4: Solve

min
{∑

u,v∈V c(Qu,v )xu,v :
∑

F×(u,v) xu,v ≥ 1 ∀F ∈ Ω
}

⇒ x∗
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Proof sketch (cont.)

Step 4: Solve

min
{∑

u,v∈V c(Qu,v )xu,v :
∑

F×(u,v) xu,v ≥ 1 ∀F ∈ Ω
}

⇒ x∗ (Lemma 3: c(x∗) ≤ 2OPT )
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Proof sketch (cont.)

Step 4: Solve

min
{∑

u,v∈V c(Qu,v )xu,v :
∑

F×(u,v) xu,v ≥ 1 ∀F ∈ Ω
}
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Bulk(Shortest Path)

Proof sketch (cont.)

Step 4: Solve

min
{∑

u,v∈V c(Qu,v )xu,v :
∑

F×(u,v) xu,v ≥ 1 ∀F ∈ Ω
}

.4 ≥ .16̄

.1 < .16̄

Q1

Q2

type(F ) = 3
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Proof sketch (cont.)

Step 4: Solve

min
{∑

u,v∈V c(Qu,v )xu,v :
∑

F×(u,v) xu,v ≥ 1 ∀F ∈ Ω
}

.4 ≥ .16̄

.1 < .16̄.1

.15

.3.45

type(F ) = 3
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Proof sketch (cont.)

Step 4: Solve

min
{∑

u,v∈V c(Qu,v )xu,v :
∑

F×(u,v) xu,v ≥ 1 ∀F ∈ Ω
}

.1 < .16̄

.15 < .16̄

.3 < .3̄.45 > .3̄

type(F ) = 3
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Bulk(Shortest Path)

Proof sketch (cont.)

Step 4: Solve

min
{∑

u,v∈V c(Qu,v )xu,v :
∑

F×(u,v) xu,v ≥ 1 ∀F ∈ Ω
}

.1 < .16̄

.4 ≥ .16̄

.6 ≥ .3̄.1 < .3̄

type(F ) = 1
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Proof sketch (cont.)

Partition Ω by type ⇒ Ω1, · · · ,Ω4.
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Proof sketch (cont.)

Partition Ω by type ⇒ Ω1, · · · ,Ω4.

Ωi is fractionally covered by 6x∗ for i = 1, 2, and
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Proof sketch (cont.)

Partition Ω by type ⇒ Ω1, · · · ,Ω4.

Ωi is fractionally covered by 6x∗ for i = 1, 2, and

Ωi is fractionally covered by 3x∗ for i = 3, 4.
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Bulk(Shortest Path)

Proof sketch (cont.)

Partition Ω by type ⇒ Ω1, · · · ,Ω4.

Ωi is fractionally covered by 6x∗ for i = 1, 2, and

Ωi is fractionally covered by 3x∗ for i = 3, 4.

Step 5: Remove redundant scenarios for types 3, 4
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Proof sketch (cont.)

Partition Ω by type ⇒ Ω1, · · · ,Ω4.

Ωi is fractionally covered by 6x∗ for i = 1, 2, and

Ωi is fractionally covered by 3x∗ for i = 3, 4.

Step 5: Remove redundant scenarios for types 3, 4

Step 6: Solve Interval Cover problems ⇒T1, · · · ,T4
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Bulk(Shortest Path)

Proof sketch (cont.)

Partition Ω by type ⇒ Ω1, · · · ,Ω4.

Ωi is fractionally covered by 6x∗ for i = 1, 2, and

Ωi is fractionally covered by 3x∗ for i = 3, 4.

Step 5: Remove redundant scenarios for types 3, 4

Step 6: Solve Interval Cover problems ⇒T1, · · · ,T4

Step 6: Return S1 ∪ T1 ∪ · · · ∪ T4
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Bulk(Shortest Path)

Proof sketch (cont.)

Partition Ω by type ⇒ Ω1, · · · ,Ω4.

Ωi is fractionally covered by 6x∗ for i = 1, 2, and

Ωi is fractionally covered by 3x∗ for i = 3, 4.

Step 5: Remove redundant scenarios for types 3, 4

Step 6: Solve Interval Cover problems ⇒T1, · · · ,T4

Step 6: Return S1 ∪ T1 ∪ · · · ∪ T4

Partitioning of x∗ plus integrality of Interval Cover
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Other nonuniform models

A more realistic model: (multi-Bulk Robustness)

Given Ω = {F1, · · · ,Fm} and k ∈ N find, the scenario set is

Ωk =

{
Y =

⋃
F∈Ω′

F : Ω′ ⊂ Ω, |Ω′| ≤ k

}

Perhaps more importantly: reliability analysis (interdiction)

Find Ω′ ⊂ Ωk such that G −
⋃

F∈Ω′ F ...

Interdiction in networks with a diffusion dynamics

(Threshold model, Cascade model...)
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Nonuniform...

T H A N K Y O U
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