
Multiroute Flows 
& 

Node-weighted Network Design 

Chandra Chekuri    

Univ of  Illinois, Urbana-Champaign 

Joint work with Alina Ene and Ali Vakilian  



Survivable Network Design 
Problem (SNDP) 

Input: 
•  undirected graph G=(V,E) 

•  integer requirement r(st) for each pair of  nodes st 

 

Goal:   min-cost subgraph H of  G s.t H contains r(st)    
 disjoint paths for each pair st 
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Steiner forest for pairs 
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r(s1t1) = r(s2t2) = 2  and r(s3t3) = 1 



SNDP Variants 

Requirement 
•  EC-SNDP : paths are required to be edge-disjoint 

•  Elem-SNDP: element disjoint 

•  VC-SNDP: vertex/node disjoint 

 

Cost 
•  edge-weights 

•  node-weights 



Known Approximations 

Edge Weights Node Weights 

Steiner forest  2 - 1/k  [AKR’91] O(log n) [KleinRavi’95] 

EC-SNDP 2 [Jain’98] O(k log n) [Nutov’07] 

Elem-SNDP 2 [FJW’01] O(k log n) [Nutov’09] 

VC-SNDP O(k3 log n) [CK’09] O(k4 log2 n) 
[CK’09+Nutov’09] 

k := maxst r(st) 



Cut-LP for EC-SNDP 

min ∑e c(e) x(e) 
 
 x(±(A)) ¸ r(st)       A ½ V, A separates st 
 
 0 · x(e) · 1 
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Theorem: [Jain] Integrality gap of  Cut-LP is 2 



Multi-route flows 

P(st) = { p | p is a st path } 

s-t flow, path-based defn f  : P(st) ! R+ 

f(p) flow on path p 

 

P(st, h) = {p = (p1,p2,...,ph) | each pj 2 P(st) and the
     paths are edge-disjoint } 

h-route s-t flow  f  : P(st, h) ! R+ 

f(p) flow on path-tuple p 
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Multiroute flows: basic 
theorem 

[Kishimoto,Aggarwal-Orlin] 

Theorem: An acyclic edge s-t flow  x : E ! R+ with 
value v can be decomposed into a h-route flow iff          

 x(e) · v/h  for all edges e 
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Multi-route flow LP for SNDP 

min ∑e c(e) x(e) 
 
 ∑

 p 2 P(st, r(st)) f(p) ¸ 1  for all st 
 
∑

 p 2 P(st, r(st)):e 2 p  f(p) · x(e)   for all e, st 
 
 0 · x(e) 
 



Multi-route flow LP for SNDP 

min ∑e c(e) x(e) 
 
 ∑

 p 2 P(st, r(st)) f(p) ¸ 1  for all st 
 
∑

 p 2 P(st, r(st)):e 2 p  f(p) · x(e)   for all e, st 
 
 0 · x(e) 
 

Solving the LP: Separation oracle for dual is min-cost s-t flow  



Cut-LP vs Multi-route LP 

Claim: Cut-LP and MRF-LP are “equivalent” 

Follows from multiroute-flow theorem 



Prize-collecting SNDP 

Input: 
•  undirected graph G=(V,E) 

•  integer requirement r(st) for each pair of  nodes st 

•  non-negative penalty ¼(st) for each pair st 

Goal:   subgraph H of  G to minimize cost(H) + ¼(S) 
 where S is set of  unsatisfied pairs in H 

All-or-nothing: st satisfied if  r(st) disjoint paths in H 

 

 



Prize-collecting SNDP 

[BienstockGSW’93] Scaling trick to obtain algorithm 
for PC-Steiner-tree from Steiner-tree LP 

[SSW’07, NSW’08] PC-SNDP for higher connectivity 

[HKKN’10] First constant factor for PC-SNDP in all-
or-nothing model via “stronger” LP.  

 

 

 



Prize-collecting SNDP 

[BienstockGSW’93] Scaling trick to obtain algorithm 
for PC-Steiner-tree from Steiner-tree LP 

[SSW’07, NSW’08] PC-SNDP for higher connectivity 

[HKKN’10] First constant factor for PC-SNDP in all-
or-nothing model via “stronger” LP.  

Claim: Scaling trick of  [BGSW’93] works easily for 
PC-SNDP via MRF-LP 

“stronger” LP of  [HKKN’10] equivalent to MRF-LP 

 

 

 



MRF-LP for PC-SNDP 

min ∑e c(e) x(e) + ∑st ¼(st) z(st) 
 
 ∑

 p 2 P(st, r(st)) f(p) ¸ 1- z(st)  for all st 
 
∑

 p 2 P(st, r(st)):e 2 p  f(p) · x(e)  for all e, st 
 
x(e) ¸ 0   for all e 
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∑

 p 2 P(st, r(st)):e 2 p  f(p) · x(e)  for all e, st 
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Rounding:  
•  A = { st | z(st) ¸ ½ } 
•  Pay penalty for pairs in A 
•  Connect pairs not in A  
 



MRF-LP for PC-SNDP 

Rounding:  
•  A = { st | z(st) ¸ ½ } 
•  Pay penalty for pairs in A 
•  Connect pairs not in A  
 

Analysis: 
•  Penalty for pairs in A is ·  2OPT 

•  x’(e) = min{1,2x(e)} is feasible 
for MRF-LP to connect pairs not 
in A 

 

min ∑e c(e) x(e) + ∑st ¼(st) z(st) 
 
 ∑

 p 2 P(st, r(st)) f(p) ¸ 1- z(st)  for all st 
 
∑

 p 2 P(st, r(st)):e 2 p  f(p) · x(e)  for all e, st 
 
x(e) ¸ 0   for all e 
 



MRF-LP for PC-SNDP 

Also extends easily to “submodular” penalty functions 

Use Lovasz-extension with variables z(st) 

([Chudak-Nagano’07] did this for Steiner tree) 

 

Main message: [0,1] variables instead of  [0,k] variables 



Another “easy” application of  
multi-route flows 

[Srinivasan’99] Dependent randomized rounding for 
multipath-routing to minimize congestion 

No need for dependent rounding. [Raghavan-Thompson’87] 
style independent rounding works with multi-route flow 
decomposition 

Advantages: 

•  Simpler and transparent 

•  Allows improvement via Lovasz-Local-Lemma for the 
short-paths case 



Node-Weighted SNDP 



Node-Weighted SNDP 

[Klein-Ravi’95] Node-weighted Steiner tree/forest 

•  O(log n) approximation via “spiders” 

•  Reduction from Set Cover to show Ω(log n) hardness 



Node-Weighted SNDP 

[Nutov’07,Nutov’09] Node-weighted SNDP 

•  O(k log n) approximation via generalization of  
spiders and augmentation framework of  
[Williamson etal]  

•  Combinatorial algorithms, not LP based 



Advantages of  LP-approach 

[Guha-Moss-Naor-Schieber’99] LP gap of  O(log n) for 
NW Steiner tree/forest 

[Demaine-Hajia-Klein’09] LP gap of  O(1) for NW 
Steiner tree/forest in planar graphs  

 

Via [BGSW’93] similar bounds for NW PC-ST/SF 

 



LP for NW SNDP 

Not clear! Why? 



LP for NW SNDP 

Not clear! Why? 

EC-SNDP for a single pair is NP-Hard for large k 
•  Ω(log n) hardness: easy reduction from set cover  

•  [Nutov’07] Related to bipartite k-densest-subgraph 
problem. Polylog approx unlikely.  

•  Consequence: Approx ratio depends on k 

Open: approximability of  single-pair for fixed k 



MRF-LP for node weights 

min ∑v c(v) x(v) 
 
 ∑

 p 2 P(st, r(st)) f(p) ¸ 1 for all st 
 
∑

 p 2 P(st, r(st)):v 2 p  f(p) · x(v)  for all v, st 
 
 0 · x(v) 
 



MRF-LP for node weights 

min ∑v c(v) x(v) 
 
 ∑

 p 2 P(st, r(st)) f(p) ¸ 1 for all st 
 
∑

 p 2 P(st, r(st)):v 2 p  f(p) · x(v)  for all v, st 
 
 x(v) ¸ 0   for all v 
 

Solving MRF-LP for EC-SNDP is hard 
 
MRF-LP can be solved in poly-time for VC-SNDP! 
 
Can solve MRF-LP for EC-SNDP within a factor of  k 



Integrality gap of  MRF-LP 

Theorem: Integrality gap of  MRF-LP is O(k log n) for 
EC-SNDP and Elem-SNDP 

 

Theorem: Integrality gap of  MRF-LP is O(k) for EC-
SNDP and Elem-SNDP on planar graphs 

 

Results extend to VC-SNDP and PC-SNDP via 
reductions 

 

 



Approximations for SNDP 

Approx ratios for prize-collecting problems within O(1) for all probs.  

Edge Weights Node Weights Node-Weights 
Planar Graphs 

Steiner forest  2 - 1/k  [AKR’91] O(log n) 
[KleinRavi’95] 

O(1) [DHK’09] 

EC-SNDP 2 [Jain’98] O(k log n) 
[Nutov’07] 

O(k) 

Elem-SNDP 2 [FJW’01] O(k log n) 
[Nutov’09] 

O(k) 

VC-SNDP O(k3 log n) 
[CK’09] 

O(k4 log2 n) 
[CK’09,Nutov’09] 

O(k4 log n) 



Proving Integrality Gap for 
MRF-LP 

•  Augmentation framework [Williamson etal] 

•  Yet another LP (Aug-LP) 

•  Spiders and dual-fitting for general graphs following 
ideas from [Guha etal’99, Nutov’07,’09] 

•  Primal-dual for planar graphs following [Demaine-
Hajia-Klein’09] 

Some subtle technical issues 



Augmentation Framework 
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r(s1t1) = r(s2t2) = 2  and r(s3t3) = 1 
Iteration 1 
 
Node-weighted 
Steiner forest problem 
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r(s1t1) = r(s2t2) = 2  and r(s3t3) = 1 
Iteration 2 
 
Increase connectivity 
by 1 for s1t1 and s2t2 
 
Residual graph 
 
Covering skew-
supermodular 
function (but arising 
from proper func) in 
residual graph  
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Augmentation Problem 

Xi-1 : nodes selected in iterations 1 to i-1  

Ei-1 : edges in G[Xi-1],   Gi : residual graph G\ Ei-1 

fi is residual covering function 

fi(A) = 1 if  A seps st with r(st) ¸ i and |±Ei-1 (A)| = i-1 

Problem: find min-cost set of  nodes to cover fi in Gi 

(cost of  nodes in Xi-1 to 0) 

 



Augmentation LP for phase i 

min ∑v c(v) x(v) 
 
∑v 2 ¡(A) x(v) ¸ fi(A)  for all A 
 
 x(v) ¸ 0   for all v 
 

s1 

t1 

t2 

s2 

s3 

t3 

A 

¡(A) 



Augmentation LP for phase i 

min ∑v c(v) x(v) 
 
∑v 2 ¡(S) x(v) ¸ fi(A)  for all A 
 
 x(v) ¸ 0   for all v 
 

Theorem: Integrality gap is O(log n) for general graphs and 
O(1) for planar graphs.  

If  (f,x) is feasible for MRF-LP then x is feasible for Aug-LP 



Augmentation LP for phase i 

min ∑e c(v) x(v) 
 
∑v 2 ¡(S) x(v) ¸ fi(A)  for all A 
 
 x(v) ¸ 0   for all v 
 

Theorem: Integrality gap is O(log n) for general graphs and 
O(1) for planar graphs.  

If  (f,x) is feasible for MRF-LP then x is feasible for Aug-LP 

Caveat: Integrality gap is unbounded for general skew-supermodular function! 



Analysis Aug-LP 

•  Spiders for general graphs via dual fitting 

•  Primal-dual for planar graphs 
•  Useful lemma on node-minimal augmentation  



Primal-Dual Analysis  
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C : minimal violated 
sets 

[Williamson etal] average degree of  sets in C wrt to edges in an edge-
minimal feasible solution is · 2 

Lemma: Number of  nodes adjacent to sets in C in a node-minimal feasible 
solution is at most 4 |C| 



Primal-Dual Analysis  
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C : minimal violated 
sets 

Lemma: Number of  nodes adjacent to sets in C in a node-minimal feasible 
solution is at most 4 |C| 
 
By planarity average # of  nodes that a set C 2 C is adjacent to is O(1) 



Thank You! 


