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Survivable Network Design
Problem (SNDP)

Input:
* undirected graph G=(V,E)
° Integer requirement r(st) for each pair of nodes st

Goal: min-cost subgraph H of G s.t H contains r(st)
disjoint paths for each pair st







Steiner forest for pairs




1(s;t;) = 1(s,t,) = 2 and r(sst;) = 1




SNDP Variants

Requirement
- EC-SNDP : paths are required to be edge-disjoint
* Elem-SNDP: element disjoint
* VC-SNDP: vertex/node disjoint

Cost
* edge-weights
* node-weights




Known Approximations

Steiner forest
EC-SNDP
Elem-SNDP

VC-SNDP

k := maxg r(st)

Edge Weights
2-1/k [AKR91]
2 [Jain’98]

2 [FIW’01]

O(k3 log n) [CK’09]

Node Weights

O(log n) [KleinRavi’95]
O(k log n) [Nutov’07]
O(k log n) [Nutov’09]

O(k* log? n)
[CK’09+Nutov’09]




min Y, c(e) x(e)
X(0(A)) = 1(st)

0<x(e)<1

A C V, A separates st Cut-LP for EC-SNDP

1(s;t;) = 1(s,t,) = 2 and 1(s;t3) = 1




min Y, c(e) x(e)
X(0(A)) = 1(st)

0<x(e)<1

A C V, A separates st Cut-LP for EC-SNDP

1(s;t;) = 1(s,t,) = 2 and 1(s;t3) = 1

Theorem: [Jain] Integrality gap of Cut-LP 1s 2




Multi-route tlows

P(st) = {p | pisastpath }
s-t flow, path-based defn f : P(st) — R*

f(p) flow on path p

P(st, h) = {p = (p;,P,,-.-,Pn) | €ach p; € P(st) and the
paths are edge-disjoint }

h-route s-t flow f : P(st, h) - R*

f(p) flow on path-tuple p







Multiroute flows: basic
theorem

|Kishimoto,Aggarwal-Orlin]

Theorem: An acyclic edge s-t flow x: E — R* with
value v can be decomposed into a h-route flow 7ff
x(e) < v/h for all edges e




Multi-route tlow LP for SNDP

min ), c(e) x(e)
E p € P(st, r(st)) f(p) > 1 for all st

E p € P(st, r(st)):e € p f(p) < X(€) for all e, st

0 < x(e)




Multi-route tlow LP for SNDP

min ), c(e) x(e)
E p € P(st, r(st)) f(p) > 1 for all st

E p € P(st, r(st)):e € p f(p) < X(€) for all e, st

0 < x(e)

Solving the LP: Separation oracle for dual is min-cost s-t flow




Cut-LP vs Multi-route LP

Claim: Cut-LP and MRF-LP are “equivalent”

Follows from multiroute-flow theorem




Prize-collecting SNDP

Input:
* undirected graph G=(V,E)
° Integer requirement r(st) for each pair of nodes st
* non-negative penalty m(st) for each pair st

Goal: subgraph H of G to minimize cost(H) + 7(S)
where S 1s set of unsatisfied pairs in H

All-or-nothing: st satisfied if r(st) disjoint paths in H




Prize-collecting SNDP

|BienstockGSW’93] Scaling trick to obtain algorithm
for PC-Steiner-tree from Steiner-tree LP

[SSW’07, NSW’08] PC-SNDP for higher connectivity

|[HKKN’10] First constant factor for PC-SNDP 1n all-
or-nothing model via “stronger” LP.




Prize-collecting SNDP

|BienstockGSW’93] Scaling trick to obtain algorithm
for PC-Steiner-tree from Steiner-tree LP

[SSW’07, NSW’08] PC-SNDP for higher connectivity

|[HKKN’10] First constant factor for PC-SNDP 1n all-
or-nothing model via “stronger” LP.

Claim: Scaling trick of [BGSW’93] works easily for
PC-SNDP via MRF-LP

“stronger” LP of [HKKN’10] equivalent to MRF-LP




MRF-LP for PC-SNDP

min Y. c(e) x(e) + X, m(st) z(st)
2 p € P(st, 1(st)) f(p) > 1- z(st)  forall st

E p € P(st, r(st)):e € p f(p) < X(€) for all e, st

x(e) >0 foralle




MRF-LP for PC-SNDP

min Y, c(e) x(e) + Y m(st) z(st)
> p € P(st, 1(st)) f(p) > 1- z(st)  forall st
E p € P(st, r(st)):e € p f(p) < X(e) for all e, st

x(e) >0 foralle

Rounding:

e A={st] z(st)> "%}

* Pay penalty for pairs in A
* Connect pairs not in A




MRF-LP for PC-SNDP

x(e) >0 foralle

min Y, c(e) x(e) + Y m(st) z(st)
E p € P(st, r(st)) f(p) Z 1- Z(St)

E p € P(st, r(st)):e € p f(p) < X(e) for all e, st

for all st

Rounding:

e A={st] z(st)> "%}

* Pay penalty for pairs in A
* Connect pairs not in A

Analysis:

Penalty for pairs in A is < 20PT
x’(e) = min{l,2x(e)} is feasible
for MRF-LP to connect pairs not
in A




MRF-LP for PC-SNDP

Also extends easily to “submodular” penalty functions

Use Lovasz-extension with variables z(st)

([Chudak-Nagano’07] did this for Steiner tree)

Main message: [0,1] variables instead of [0,k] variables




Another “easy” application of
multi-route flows

[Srinivasan’99] Dependent randomized rounding for
multipath-routing to minimize congestion

No need for dependent rounding. [Raghavan-Thompson’87]
style independent rounding works with multi-route flow
decomposition

Advantages:
* Simpler and transparent

* Allows improvement via Lovasz-Local-Lemma for the
short-paths case




Node-Weighted SNDP




Node-Weighted SNDP

[Klein-Rav1’95] Node-weighted Steiner tree/forest
* O(log n) approximation via “spiders”

* Reduction from Set Cover to show Q(log n) hardness




Node-Weighted SNDP

[Nutov’07,Nutov’09] Node-weighted SNDP

O(k log n) approximation via generalization of
spiders and augmentation framework of
[Williamson etal]

Combinatorial algorithms, not LP based




Advantages of LP-approach

|Guha-Moss-Naor-Schieber’99] LP gap of O(log n) for
NW Steiner tree/forest

[Demaine-Hajia-Klein’09] LP gap of O(1) for NW
Steiner tree/forest in planar graphs

Via [BGSW’93] similar bounds for NW PC-ST/SF




LP for NW SNDP

Not clear! Why?




LP for NW SNDP

Not clear! Why?

EC-SNDP for a single pair 1s NP-Hard for large k
* Q(log n) hardness: easy reduction from set cover

* [Nutov’07] Related to bipartite k-densest-subgraph
problem. Polylog approx unlikely.

» Consequence: Approx ratio depends on k

Open: approximability of single-pair for fixed k




MREF-LP for node weights

min Y, c(v) x(v)
2 p € P(st, r(st)) f(P) > 1 for all st

> p € P(st, 1(st)):v € p f(p) < x(v) forallv, st

0 <x(v)




MREF-LP for node weights

min Y, c(v) X(v)
2 p € P(st, t(st)) f(p) > 1 for all st

E p € P(st, r(st)):v € p f(p) < X(V) for all v, st

x(v) >0 forall v

Solving MRF-LP for EC-SNDP is hard
MRF-LP can be solved in poly-time for VC-SNDP!

Can solve MRF-LP for EC-SNDP within a factor of k




Integrality gap of MRF-LP

Theorem: Integrality gap of MRF-LP 1s O(k log n) for
EC-SNDP and Elem-SNDP

Theorem: Integrality gap of MRF-LP 1s O(k) for EC-
SNDP and Elem-SNDP on planar graphs

Results extend to VC-SNDP and PC-SNDP via
reductions




Approximations for SNDP

Edge Weights Node Weights Node-Weights
Planar Graphs

Steiner forest 2-1/k [AKR’91] O(log n) O(1) [DHK’09]
[KleinRavi’95]

EC-SNDP 2 [Jain’98] O(k log n) O(k)
[Nutov’07]

Elem-SNDP 2 [FIW’01] O(k log n) O(k)
[Nutov’09]

VC-SNDP O( log n) O(k* log? n) O(k* log n)
[CK’09] [CK’09,Nutov’09]

Approx ratios for prize-collecting problems within O(1) for all probs.




Proving Integrality Gap for
MREF-LP

Augmentation framework [Williamson etal]

Yet another LP (Aug-LP)

Spiders and dual-fitting for general graphs following
1deas from [Guha etal’99, Nutov’07,’09]

Primal-dual for planar graphs following [Demaine-
Hajia-Klein’09]

Some subtle technical 1ssues




Augmentation Framework

1(s,t;) = 1(s,ty) = 2 and 1(s5t3) = 1




Augmentation Framework

r(s,t;) = 1(s,t,) = 2 and r(s.t:) = 1
(s1ty) = 1(s,t)) (85t) Iteration 1

Node-weighted
Steiner forest problem




Augmentation Framework

1(st;) = 1(S,t5) and 1(s;t5) Iteration 2

Increase connectivity
by 1 for s,t; and s,t,

Residual graph

Covering skew-
supermodular
function (but arising
from proper func) in
residual graph




Augmentation Framework

1(st;) = 1(S,t5) and 1(s;t5) Iteration 2

Increase connectivity
by 1 for s,t; and s,t,

Residual graph

Covering skew-
supermodular
function (but arising
from proper func) in
residual graph




Augmentation Framework

1(s,t;) = 1(s,ty) = 2 and 1(s5t3) = 1




Augmentation Problem

X, ; : nodes selected 1n 1terations 1 to 1-1

E.;:edgesin G[X, ], G;: residual graph G\ E,

f. 1s residual covering function

f(A) = 11f A seps st with r(st) > 1and |og(A)] =1-1
Problem: find min-cost set of nodes to cover £ in G,

(cost of nodes in X, ; to 0)




Augmentation LP for phase 1

min Y, c(v) x(v)
Sy e ayX(V) > fi(A) forall A

x(v) >0 forallv




Augmentation LP for phase 1

min Y, c(v) x(v)
2ve s X(v) > fi(A) forall A

x(v) >0 for all v

Theorem: Integrality gap is O(log n) for general graphs and
O(1) for planar graphs.

If (f,x) 1s feasible for MRF-LP then x is feasible for Aug-LP




Augmentation LP for phase 1

min Y. c(v) x(v)
2ve s X(v) > fi(A) forall A

x(v) >0 for all v

Theorem: Integrality gap 1s O(log n) for general graphs and
O(1) for planar graphs.

If (f,x) 1s feasible for MRF-LP then x is feasible for Aug-LP

Caveat: Integrality gap i1s unbounded for general skew-supermodular function!




Analysis Aug-LLP

* Spiders for general graphs via dual fitting

e Primal-dual for planar graphs

» Useful lemma on node-minimal augmentation




Primal-Dual Analysis

C : minimal violated
sets

ts

[Williamson etal] average degree of sets in C wrt to edges in an edge-
minimal feasible solution 1s < 2

Lemma: Number of nodes adjacent to sets in C in a node-minimal feasible
solution 1s at most 4 |C|




Primal-Dual Analysis

C : minimal violated
sets
e —_ - -
\
\

—
~~
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Lemma: Number of nodes adjacent to sets in C in a node-minimal feasible
solution 1s at most 4 |C|

By planarity average # of nodes that a set C € C is adjacent to is O(1)




Thank You!




