### The Euclidean k-Supplier Problem

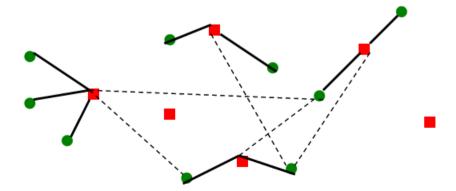
Viswanath Nagarajan (IBM)

Baruch Schieber (IBM)

Hadas Shachnai (Technion)

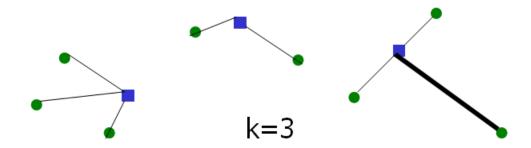
# Facility location problems

- Applications
  - plant location
  - placing servers in network
  - clustering...
- Clients and potential facilities
- Metric distances



### k-Center

- Metric (V,d), d : V×V → R<sub>+</sub>
- Open k centers S
  - Each vertex connects to nearest center
- Minimize max<sub>u∈V</sub> d(u,S)

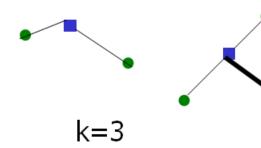


# k-Center

- Metric (V,d), d : V×V → R<sub>+</sub>
- Open k centers S
  - Each vertex connects to nearest center
- Minimize max<sub>u∈V</sub> d(u,S)
- 2-approximation algorithms

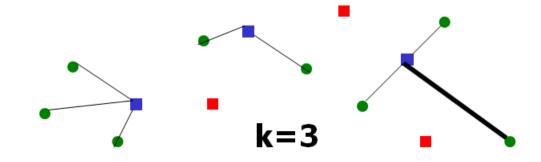
[Hochbaum, Shmoys '85] [Gonzalez '85]

Best possible (P≠NP)



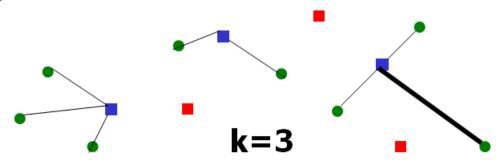


- Distinct sets of clients C, facilities F
  - metric (C∪F, d)
- Open k facilities S ⊆ F as centers
- Minimize max<sub>u∈C</sub> d(u,S)



# k-Supplier

- Distinct sets of clients C, facilities F
  - metric (C∪F, d)
- Open k facilities S ⊆ F as centers
- Minimize max<sub>u∈C</sub> d(u,S)
- 3-approximation algorithm [Hochbaum, Shmoys '86]
  - Best possible (P≠NP)



# Outline

- k-Supplier on general metrics
- Euclidean k-Supplier

Fast approximation algorithm



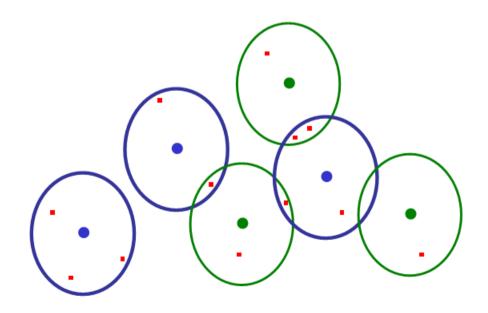
# Algorithm for k-Supplier

Guess optimal value L



# Algorithm for k-Supplier

- Guess optimal value L
- Maximal clients S of pairwise distance > 2L
  - Disjoint balls of radius L

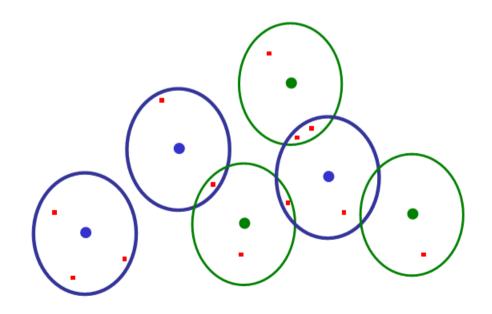


# 1

# Algorithm for k-Supplier

[Hochbaum, Shmoys '86]

- Guess optimal value L
- Maximal clients S of pairwise distance > 2L
  - Disjoint balls of radius L



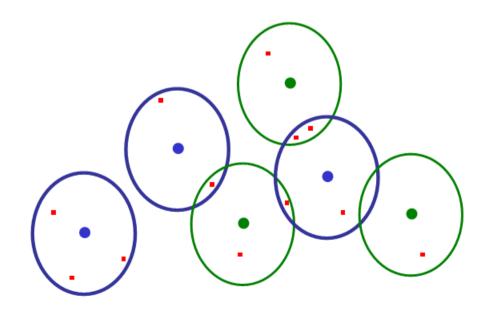
If |S| > k: declare **OPT** > L

# 1

# Algorithm for k-Supplier

[Hochbaum, Shmoys '86]

- Guess optimal value L
- Maximal clients S of pairwise distance > 2L
  - Disjoint balls of radius L

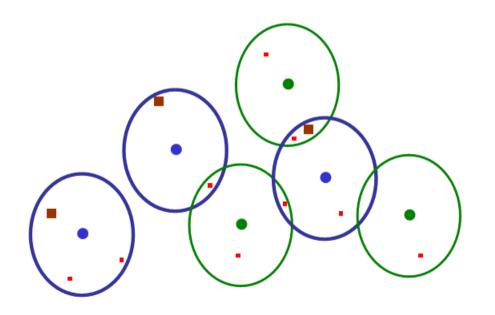


If |S| > k: declare **OPT** > L

If  $|S| \le k$ : declare **ALG**  $\le 3L$ 

# Algorithm for k-Supplier

- Guess optimal value L
- Maximal clients S of pairwise distance > 2L
  - Disjoint balls of radius L



If 
$$|S| > k$$
: declare **OPT** > L

If 
$$|S| \le k$$
: declare **ALG**  $\le 3L$  ALG = one facility in each **S** ball

# 1

# Algorithm for k-Supplier

- Guess optimal value L
- Maximal clients S of pairwise distance > 2L
  - Disjoint balls of radius L



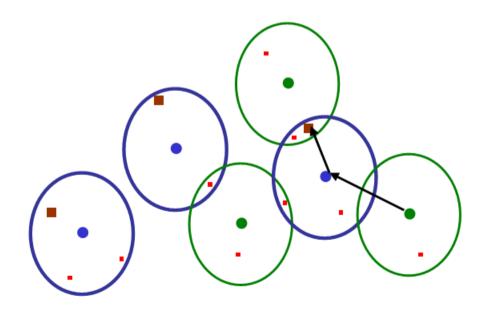
If 
$$|S| > k$$
: declare **OPT** > L

If 
$$|S| \le k$$
: declare **ALG**  $\le 3L$  ALG = one facility in each **S** ball

# •

# Algorithm for k-Supplier

- Guess optimal value L
- Maximal clients S of pairwise distance > 2L
  - Disjoint balls of radius L

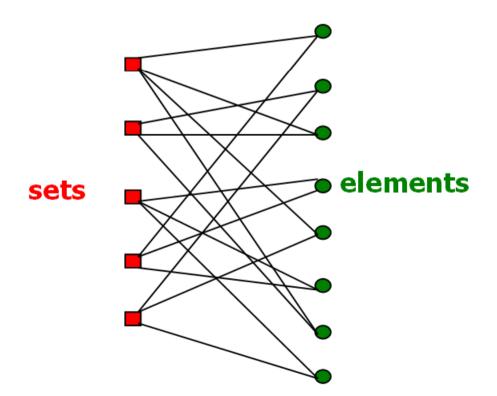


If 
$$|S| > k$$
: declare **OPT** > L

If 
$$|S| \le k$$
: declare **ALG**  $\le 3L$  ALG = one facility in each  $S$  ball

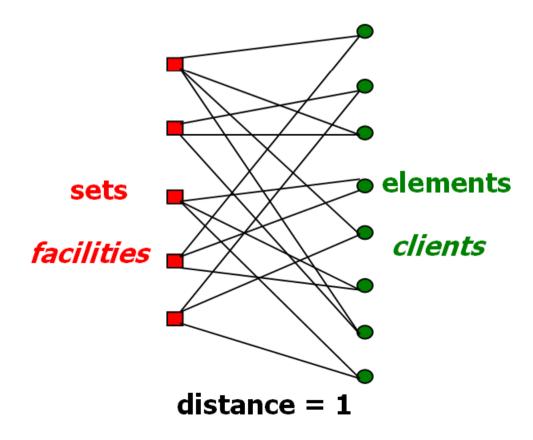


From Set Cover



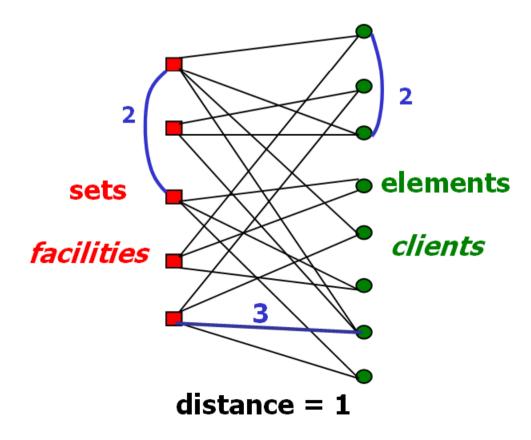


From Set Cover



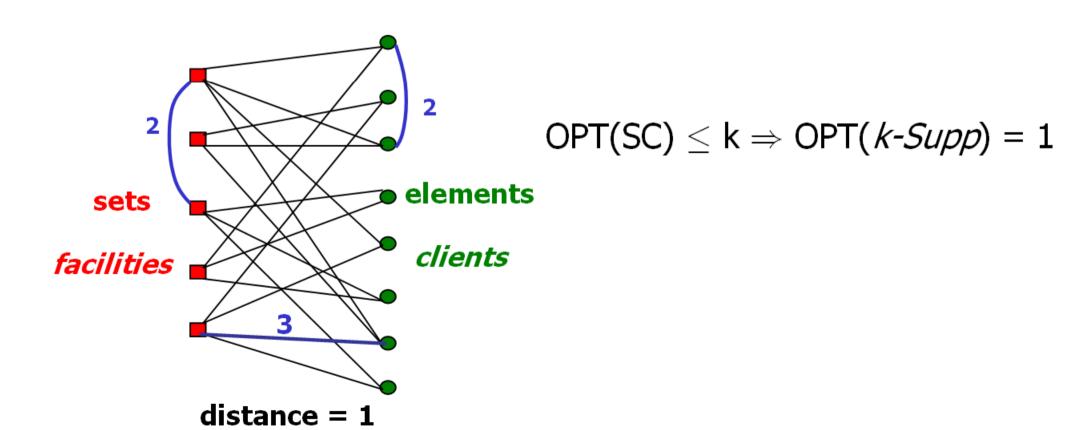


From Set Cover



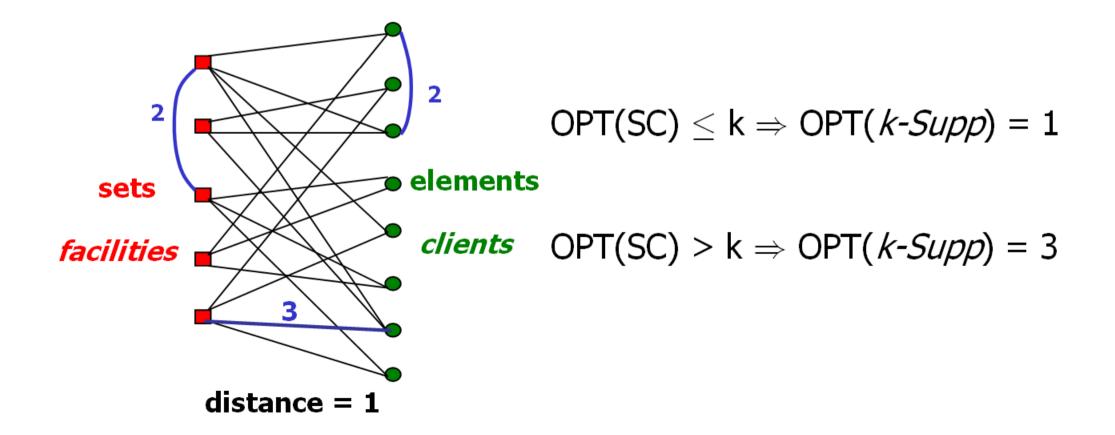


From Set Cover





From Set Cover



# Euclidean k-Supplier

Points in R<sup>d</sup>

Euclidean distance

• 
$$d(u,v) = \sqrt{(u_1-v_1)^2 + (u_2-v_2)^2 + ... + (u_d-v_d)^2}$$

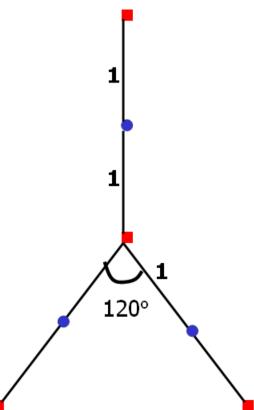
Natural metric in many applications

Can we do any better?

# Euclidean k-Supplier Hardness

**Thm**: NP-hard to approximate better than √7

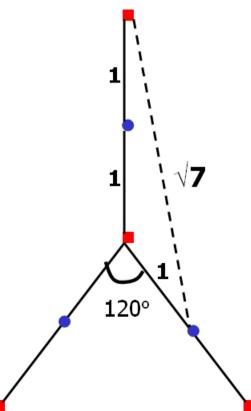
From degree 3 planar vertex cover [Feder, Greene '88]



# Euclidean k-Supplier Hardness

**Thm**: NP-hard to approximate better than √7

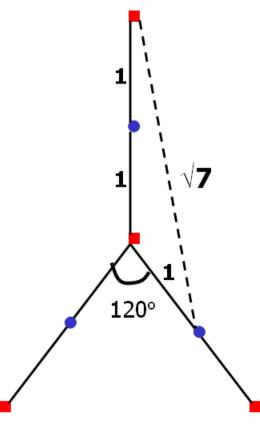
From degree 3 planar vertex cover [Feder, Greene '88]



# Euclidean k-Supplier Hardness

**Thm**: NP-hard to approximate better than √7

From degree 3 planar vertex cover [Feder, Greene '88]



$$OPT(VC) \le k \Rightarrow OPT(k-Supp) = 1$$

$$OPT(VC) > k \Rightarrow OPT(k-Supp) \ge \sqrt{7}$$

# Results

### Euclidean k-Supplier

- $\sqrt{3+1}$  < 2.74 approximation algorithm
  - Any number of dimensions
  - Running time ~O(d⋅n²)
  - $\sqrt{7}$  > 2.64 hardness [Feder, Greene '88]

# Results

### Euclidean k-Supplier

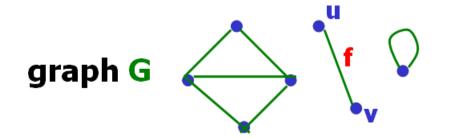
- $\sqrt{3+1}$  < 2.74 approximation algorithm
  - Any number of dimensions
  - Running time ~O(d⋅n²)
  - $\sqrt{7}$  > 2.64 hardness [Feder, Greene '88]

- Fast 2.965 approximation algorithm
  - Time O(n·log²n), d=O(1) dimensions
  - Previously 3-approx in O(n·log k)

- Guess optimal value L
- *Maximal* clients **S** of pairwise distance  $> \sqrt{3}$  L

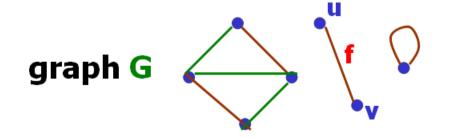
- Guess optimal value L
- *Maximal* clients **S** of pairwise distance  $> \sqrt{3}$  L
- Define graph G on vertices S
  - edge (u,v) iff  $\exists$  facility f : d(u,f) and d(v,f)  $\leq$  L

- Guess optimal value L
- *Maximal* clients **S** of pairwise distance  $> \sqrt{3}$  L
- Define graph G on vertices S
  - edge (u,v) iff  $\exists$  facility f: d(u,f) and  $d(v,f) \leq L$
- Solve min edge cover on G



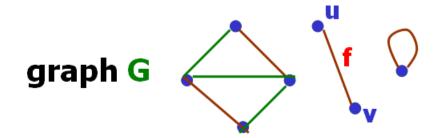
**Edge cover**: min number of edges to cover all vertices
Poly-time algorithm [Edmonds '65]...

- Guess optimal value L
- *Maximal* clients **S** of pairwise distance  $> \sqrt{3}$  L
- Define graph G on vertices S
  - edge (u,v) iff  $\exists$  facility f: d(u,f) and  $d(v,f) \leq L$
- Solve min edge cover on G



**Edge cover**: min number of edges to cover all vertices
Poly-time algorithm [Edmonds '65]...

- Guess optimal value L
- *Maximal* clients **S** of pairwise distance  $> \sqrt{3}$  L
- Define graph G on vertices S
  - edge (u,v) iff  $\exists$  facility f: d(u,f) and  $d(v,f) \leq L$
- Solve min edge cover on G
  - EC\* > k ⇒ OPT > L
  - EC\*  $\leq$  k  $\Rightarrow$  ALG  $\leq$  ( $\sqrt{3}$ +1) · L

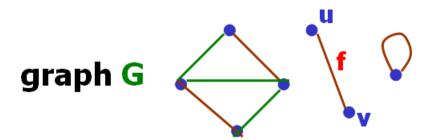


**Edge cover**: min number of edges to cover all vertices

Poly-time algorithm [Edmonds '65]...

- Guess optimal value L
- *Maximal* clients **S** of pairwise distance  $> \sqrt{3}$  L
- Define graph G on vertices S
  - edge (u,v) iff  $\exists$  facility f : d(u,f) and d(v,f)  $\leq$  L
- Solve min edge cover on G

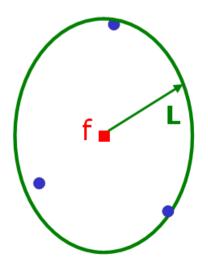
To show 
$$\begin{cases} \blacksquare & EC^* > k \Rightarrow OPT > L \\ \blacksquare & EC^* \le k \Rightarrow ALG \le (\sqrt{3}+1) \cdot L \end{cases}$$



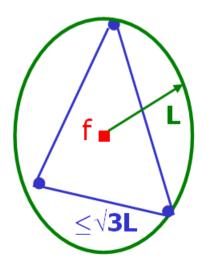
**Edge cover**: min number of edges to cover all vertices
Poly-time algorithm [Edmonds '65]...

 Main property: any facility f can "cover" at most two clients in S

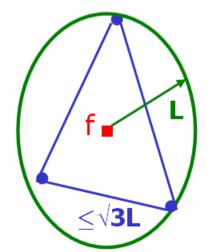
 Main property: any facility f can "cover" at most two clients in S



 Main property: any facility f can "cover" at most two clients in S



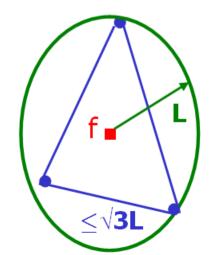
 Main property: any facility f can "cover" at most two clients in S



Contradicts choice of "net" 5!

 Main property: any facility f can "cover" at most two clients in S

k-Supplier[S] of value L ≡ edge cover on G



Contradicts choice of "net" 5!

## Running time

- Construct graph G in O(dn²)
  - naïve method
- Solve edge cover in O(n<sup>1.5</sup>)
  - O(E√V) algorithm [Micali, Vazirani '80]
- Overall: O(dn²·log n)

### Running time

- Construct graph G in O(dn²)
  - naïve method
- Solve edge cover in O(n<sup>1.5</sup>)
  - O(E√V) algorithm [Micali, Vazirani '80]
- Overall: O(dn²·log n)

Improved runtime for d=O(1)

- Approximate nearest neighbor
  - [Arya, Mount, Netanyahu, Silverman, Wu '98]
  - $1+\epsilon$  approx. nearest neighbors
  - O(log n) time per query: NN, add, delete
  - O(1) dimensions

- Approximate nearest neighbor
  - [Arya, Mount, Netanyahu, Silverman, Wu '98]
  - $1+\epsilon$  approx. nearest neighbors
  - O(log n) time per query: NN, add, delete
  - O(1) dimensions
  - $\Rightarrow$  Construct G in O(n·log n)

- Approximate nearest neighbor
  - [Arya, Mount, Netanyahu, Silverman, Wu '98]
  - $1+\epsilon$  approx. nearest neighbors
  - O(log n) time per query: NN, add, delete
  - O(1) dimensions
  - ⇒ Construct G in O(n·log n)
- Edge cover in O(n<sup>1.5</sup>)

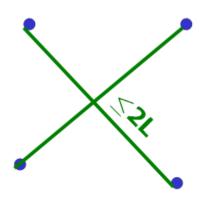
```
\sqrt{3+1+\epsilon} approx. in \sim O(n^{1.5}) time
```

- Approximate nearest neighbor
  - [Arya, Mount, Netanyahu, Silverman, Wu '98]
  - $1+\epsilon$  approx. nearest neighbors
  - O(log n) time per query: NN, add, delete
  - O(1) dimensions
  - ⇒ Construct G in O(n·log n)
- Edge cover in O(n<sup>1.5</sup>)
  - Use additional structure in G?

 $\sqrt{3}+1+\epsilon$  approx. in  $\sim O(n^{1.5})$  time

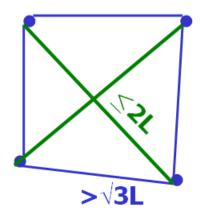


Here G is planar



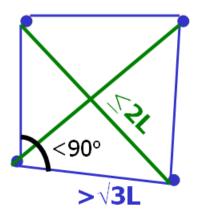


Here G is planar



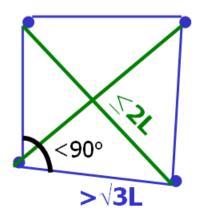


Here G is planar



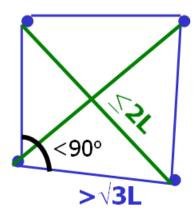


Here G is planar



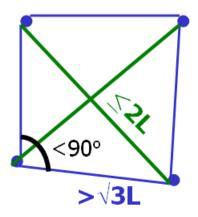


- Here G is planar
- Use  $O(n^{\omega/2})$  algorithm [Mucha, Sankowski '06]
  - $\omega$  < 2.38 is matrix multiplication exponent



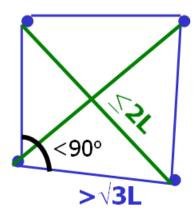


- Here G is planar
- Use  $O(n^{\omega/2})$  algorithm [Mucha, Sankowski '06]
  - $\omega$  < 2.38 is matrix multiplication exponent
- Don't know further useful structure of G



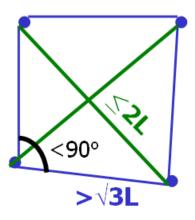


- Here G is planar
- Use  $O(n^{\omega/2})$  algorithm [Mucha, Sankowski '06]
  - $\omega$  < 2.38 is matrix multiplication exponent
- Don't know further useful structure of G
  - For d=2, G can be any degree 3 planar





- Here G is planar
- Use  $O(n^{\omega/2})$  algorithm [Mucha, Sankowski '06]
  - $\omega$  < 2.38 is matrix multiplication exponent
- Don't know further useful structure of G
  - For d=2, G can be any degree 3 planar
  - For d≥3, G does not exclude any minor





### Nearly linear time algorithm



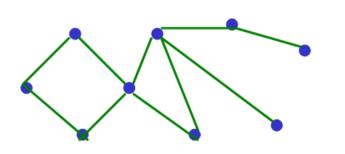
### Near-linear time

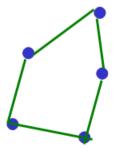
Idea: reduce to edge cover on special graphs



### Near-linear time

- Idea: reduce to edge cover on special graphs
  - Cactus (linear cycles)
  - Solvable in linear time

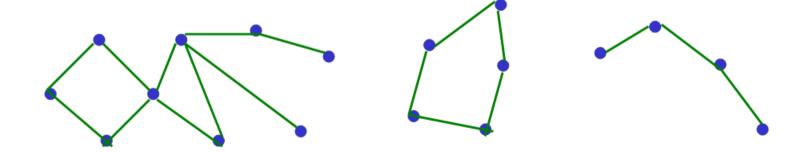






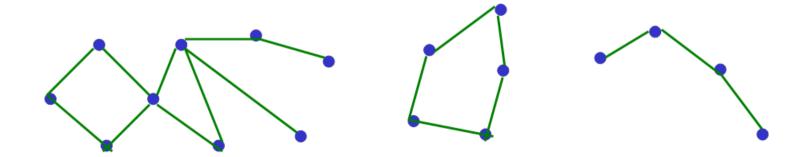


- Idea: reduce to edge cover on special graphs
  - Cactus (linear cycles)
  - Solvable in linear time
- Constructing G more complex
  - Also worse approx. ratio 2.965



### Near-linear time

- Idea: reduce to edge cover on special graphs
  - Cactus (linear cycles)
  - Solvable in linear time
- Constructing G more complex
  - Also worse approx. ratio 2.965 ⊗
  - But time ~O(n) using ANN



# 1

### Constructing G

- Graph G has
  - vertices S ⊂ clients

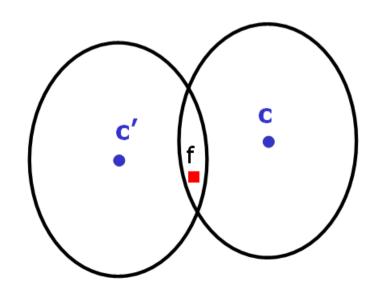
scale L = 1

- edges E ⊆ facilities
- Use larger separation in S + more geometry

- Graph G has
  - vertices S ⊂ clients

scale L = 1

- edges E ⊆ facilities
- Use larger separation in S + more geometry

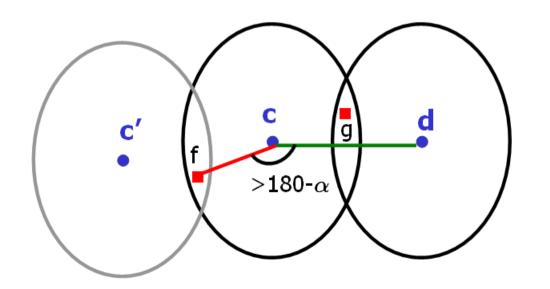


c' and c *fringe* intersect

- Graph G has
  - vertices S ⊂ clients

scale L = 1

- edges E ⊆ facilities
- Use larger separation in S + more geometry

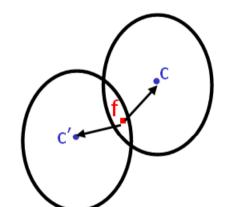


c' and c *fringe* intersect

d *antipode* intersects <f,c>

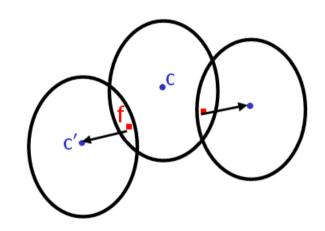
- (i) c & d fringe intersect
- (ii) d is "too far" from f





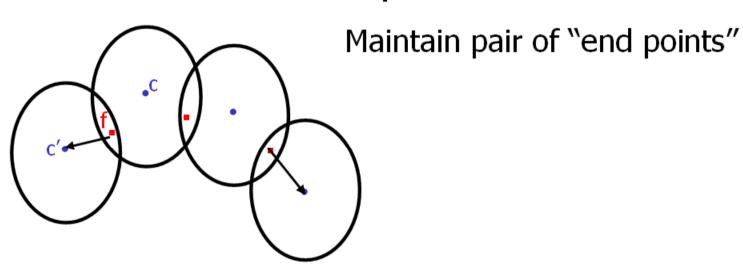
Maintain pair of "end points"



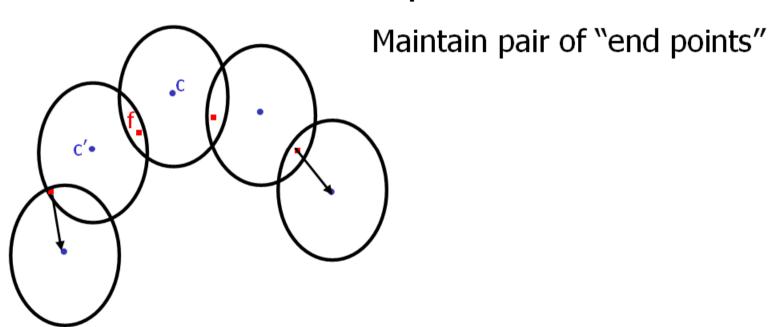


Maintain pair of "end points"

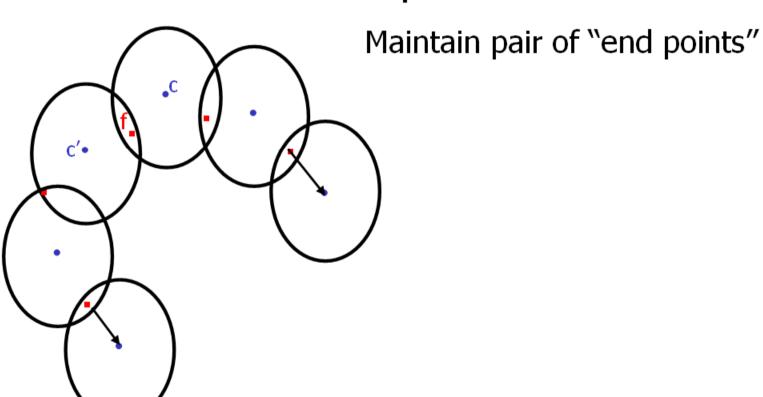




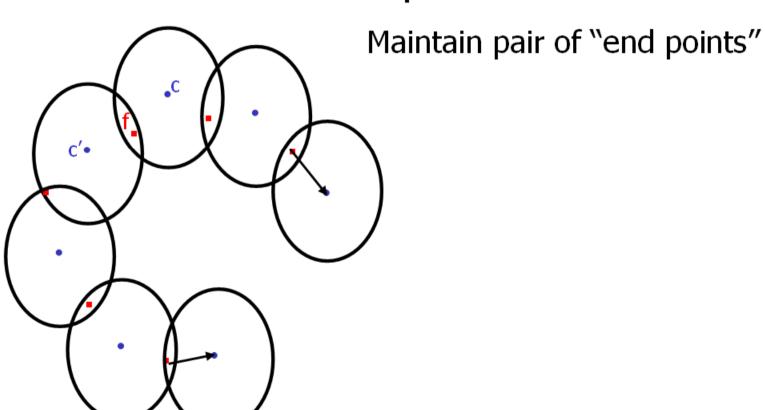


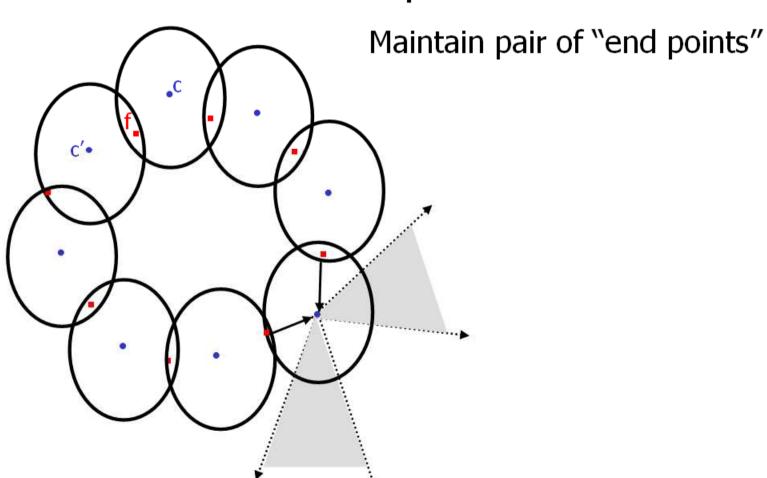


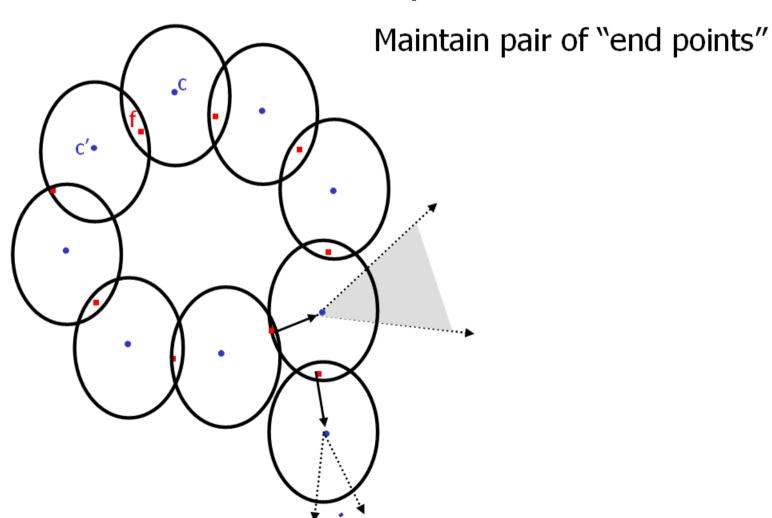


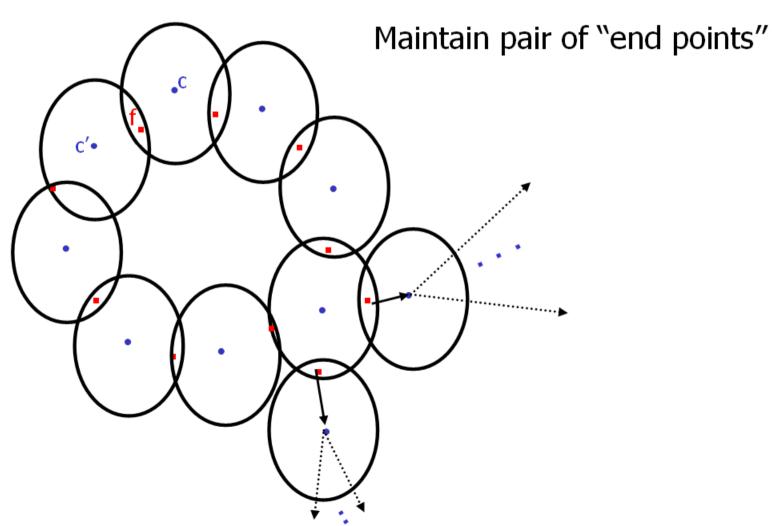


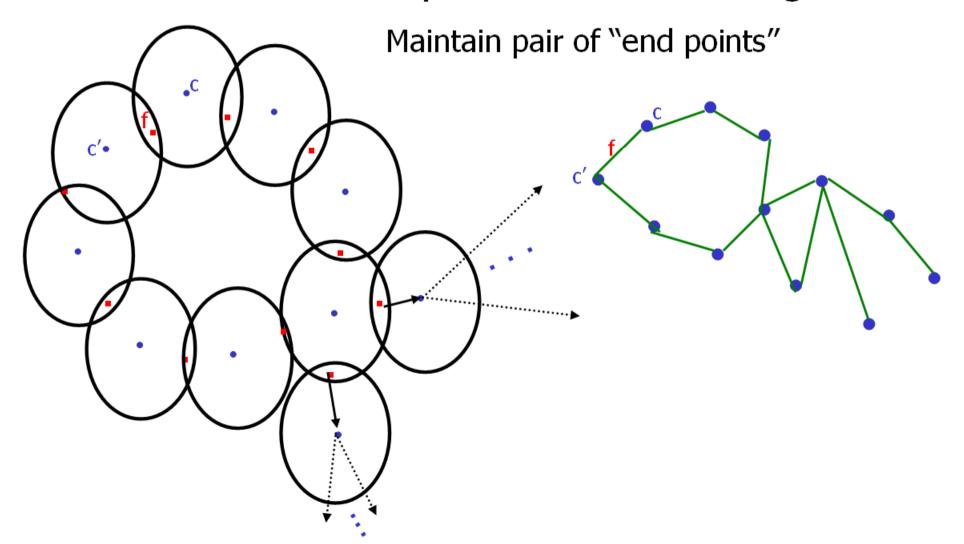








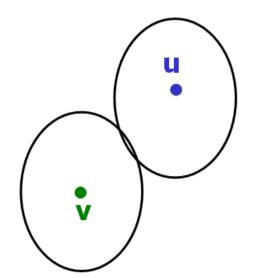




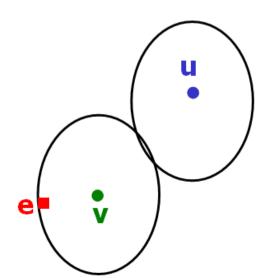


- Edge cover covers clients in G within 1
  - guess of OPT

- Edge cover covers clients in G within 1
  - guess of OPT
- Client u ∉ V(G) intersects some v ∈ V(G)

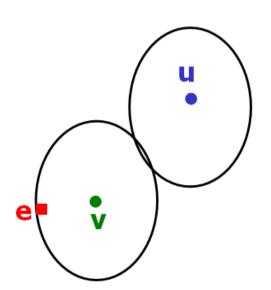


- Edge cover covers clients in G within 1
  - guess of OPT
- Client u ∉ V(G) intersects some v ∈ V(G)
  - Facility e ∈ Ball(v,1) in edge cover



- Edge cover covers clients in G within 1
  - guess of OPT
- Client u ∉ V(G) intersects some v ∈ V(G)
  - Facility e ∈ Ball(v,1) in edge cover

**Lemma**:  $d(u,e) \le (3-\rho)$  or  $d(u,V(G)) \le (2-\rho)$ .



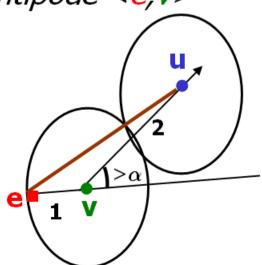
# Analys

### Analysis outline

- Edge cover covers clients in G within 1
  - guess of OPT
- Client u ∉ V(G) intersects some v ∈ V(G)
  - Facility e ∈ Ball(v,1) in edge cover

**Lemma**:  $d(u,e) \le (3-\rho)$  or  $d(u,V(G)) \le (2-\rho)$ .

u not antipode <e,v>



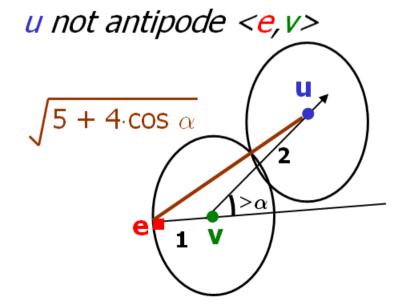
- Edge cover covers clients in G within 1
  - guess of OPT
- Client u ∉ V(G) intersects some v ∈ V(G)
  - Facility e ∈ Ball(v,1) in edge cover

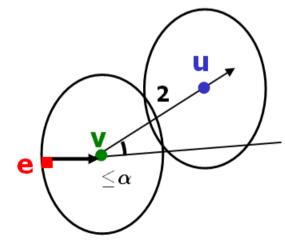
**Lemma**:  $d(u,e) \le (3-\rho)$  or  $d(u,V(G)) \le (2-\rho)$ .



- Edge cover covers clients in G within 1
  - guess of OPT
- Client u ∉ V(G) intersects some v ∈ V(G)
  - Facility e ∈ Ball(v,1) in edge cover

**Lemma**:  $d(u,e) \le (3-\rho)$  or  $d(u,V(G)) \le (2-\rho)$ .



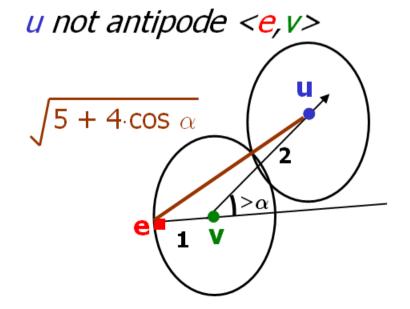


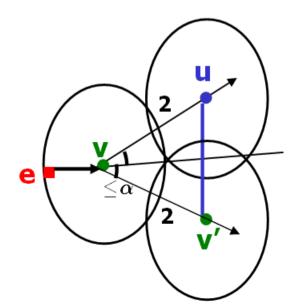
u antipode <e,v>



- Edge cover covers clients in G within 1
  - guess of OPT
- Client u ∉ V(G) intersects some v ∈ V(G)
  - Facility e ∈ Ball(v,1) in edge cover

**Lemma**:  $d(u,e) \le (3-\rho)$  or  $d(u,V(G)) \le (2-\rho)$ .





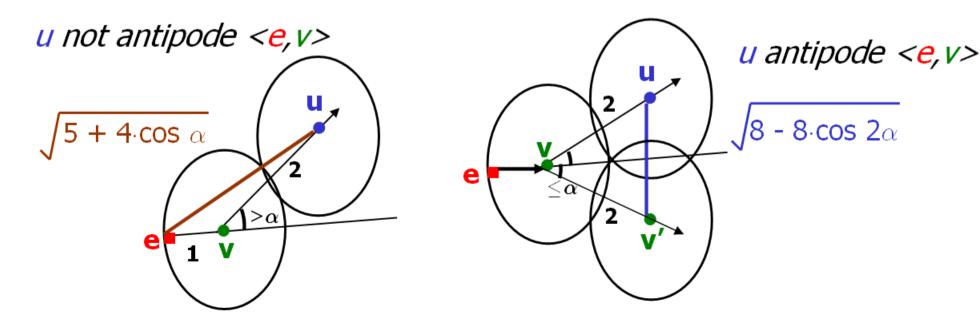
u antipode <e,v>

# 1

### Analysis outline

- Edge cover covers clients in G within 1
  - guess of OPT
- Client u ∉ V(G) intersects some v ∈ V(G)
  - Facility e ∈ Ball(v,1) in edge cover

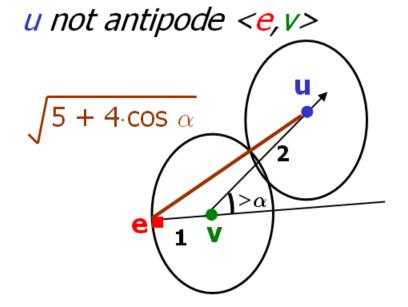
**Lemma**:  $d(u,e) \le (3-\rho)$  or  $d(u,V(G)) \le (2-\rho)$ .

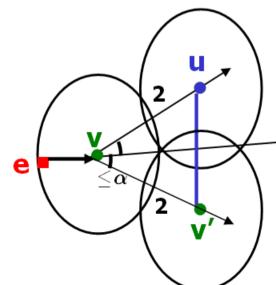




- Edge cover covers clients in G within 1
  - guess of OPT
- Client u ∉ V(G) intersects some v ∈ V(G)
  - Facility e ∈ Ball(v,1) in edge cover

**Lemma**:  $d(u,e) \le (3-\rho)$  or  $d(u,V(G)) \le (2-\rho)$ .





u antipode <e,v>

$$\sqrt{8 - 8 \cdot \cos 2\alpha}$$

Couple more cases..

## Open Questions

- Tight approximation ratio ?
  - $\sqrt{7} \le \alpha \le 1 + \sqrt{3}$
- Linear time  $1+\sqrt{3}$  approximation ?
- Euclidean *k-Center* better than 2 ?
  - $\sqrt{3} \le \alpha \le 2$

### Open Questions

- Tight approximation ratio ?
  - $\sqrt{7} \le \alpha \le 1 + \sqrt{3}$
- Linear time  $1+\sqrt{3}$  approximation ?
- Euclidean k-Center better than 2 ?
  - $\sqrt{3} \le \alpha \le 2$
- "Subset" k-Supplier better than 3 ?
  - facilities ⊆ clients

### Open Questions

- Tight approximation ratio ?
  - $\sqrt{7} \le \alpha \le 1 + \sqrt{3}$
- Linear time  $1+\sqrt{3}$  approximation ?
- Euclidean k-Center better than 2 ?
  - $\sqrt{3} \le \alpha \le 2$
- "Subset" k-Supplier better than 3 ?
  - facilities ⊆ clients

### Thank You!