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i Facility location problems

= Applications

=P
= p
s C

ant location
acing servers in network

ustering...

m Clients and potential facilities

s Metric distances
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s Metric (V,d), d:VxV — R,
= Open k centers S
» Each vertex connects to nearest center
= Minimize max,., d(u,S)
= 2-approximation algorithms
[Hochbaum, Shmoys ‘85] [Gonzalez '85]
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i k-Supplier

» Distinct sets of clients C, facilities F
= metric (CUF, d)

= Open k facilities S C F as centers

s Minimize max, . d(u,S)

= 3-approximation algorithm [Hochbaum, Shmoys '86]
= Best possible (P£NP)

TN




i Outline

= k-Supplier on general metrics

= Euclidean k-Supplier

s Fast approximation algorithm
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i Hardness for k-Supplier

[Hochbaum, Shmoys '86]

s From Set Cover

OPT(SC) < k = OPT(4k-Supp) = 1

elements

clients QOPT(SC) > k = OPT(k-Supp) = 3

distance=1



i Euclidean k-Supplier

= Points in R

s Euclidean distance
= d(u,v) = j(ul—vl)z + (U,=V,)? + ...+ (ug—vy)?

= Natural metric in many applications

Can we do any better?
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i Fuclidean k-Supplier Hardness

Thm: NP-hard to approximate better than V7
= From degree 3 planar vertex cover [Feder, Greene '88]

Fy OPT(VC) < k= OPT(k-Supp) = 1

OPT(VC) > k = OPT(k-Supp) > V7
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i Results

Euclidean k-Supplier

s V3+1 < 2.74 approximation algorithm
= Any number of dimensions
= Running time ~0(d-n?)
= V7 > 2.64 hardness [Feder, Greene '88]

= Fast 2.965 approximation algorithm
= Time O(n-log?n), d=0(1) dimensions
= Previously 3-approx in O(n-log k)
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i Algorithm

= Guess optimal value L
s Maximal clients S of pairwise distance > V3 L
= Define graph G on vertices S
» edge (u,v) /f 3 facility f : d(u,f) and d(v,f) <L
= Solve min edge coveron G

« EC* >k = OPT > L
To shows | ECx < k = ALG < (\3+1) - L

u
] O Edge cover: min number of edges to
graph G cover all vertices
v Poly-time algorithm [Edmonds '65]...
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i Analysis

= Main property: any facility f can “cover”
at most two clients in S

= k-Supplier[S] of value L = edge cover on G

! Contradicts choice of “net” S !
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i Running time

= Construct graph G in O(dn?)

= halve method
= Solve edge cover in O(ni>)

= O(E\V) algorithm [Micali, Vazirani ‘80]
= Overall: O(dn?log n)

= Improved runtime for d=0(1)
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i Faster implementation

= Approximate nearest neighbor

= [Arya, Mount, Netanyahu, Silverman,

= 1+4c approx. nearest neighbors

Wu 98]

= O(log n) time per query: NN, add, delete

= O(1) dimensions
= Construct G in O(n-log n)

= Edge cover in O(n1->)
= Use additional structure in G ?

V3+1+¢ approx.
in ~0O(n!>) time
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i Faster implementation d=2

= Here G is planar
= Use O(n+/2) algorithm [Mucha, Sankowski ‘06]
= w < 2.38 is matrix multiplication exponent

s Don’t know further useful structure of G
= For d=2, G can be any degree 3 planar
= For d>3, G does not exclude any minor

Not possible in 2d !
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i Near-linear time

= Idea: reduce to edge cover on special graphs
« Cactus (linear cycles)
= Solvable in linear time
= Constructing G more complex ®
= Also worse approx. ratio 2.965 ®
= But time ~O(n) using ANN ©

OR[N
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i Constructing G

= Graph G has
= vertices S C clients scaleL =1
= edges E C facilities

= Use larger separation in S + more geometry

c"and c fringe intersect

d antipode intersects <f,c>
(i) c & d fringe intersect
(ii) d is “too far” from f
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Analysis outline

= Edge cover covers clients in G within 1
= guess of OPT

= Client u ¢ V(G) intersects some v € V(G)
= Facility e € Ball(v,1) in edge cover

Lemma: d(u,e) < (3-p) or d(u,V(G)) < (2-p).

. <o us .
u not antipode <e,v u antipode <e,v>

JB - 8-C0s 2a

Couple more cases..
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i Open Questions

= [ight approximation ratio ?
s V7 < a < 1+4V3

= Linear time 1++3 approximation ?

s Euclidean k-Center better than 27
r \/3 g Y g 2

= Subset” k-Supplier better than 3 ?
» facilities C clients

Thank You !



