The Euclidean k-Supplier Problem

Viswanath Nagarajan (IBM)

Baruch Schieber (IBM)

Hadas Shachnai (Technion)

Facility location problems

- Applications
 - plant location
 - placing servers in network
 - clustering...
- Clients and potential facilities
- Metric distances

k-Center

- Metric (V,d), d : V×V → R₊
- Open k centers S
 - Each vertex connects to nearest center
- Minimize max_{u∈V} d(u,S)

k-Center

- Metric (V,d), d : V×V → R₊
- Open k centers S
 - Each vertex connects to nearest center
- Minimize max_{u∈V} d(u,S)
- 2-approximation algorithms

[Hochbaum, Shmoys '85] [Gonzalez '85]

Best possible (P≠NP)

- Distinct sets of clients C, facilities F
 - metric (C∪F, d)
- Open k facilities S ⊆ F as centers
- Minimize max_{u∈C} d(u,S)

k-Supplier

- Distinct sets of clients C, facilities F
 - metric (C∪F, d)
- Open k facilities S ⊆ F as centers
- Minimize max_{u∈C} d(u,S)
- 3-approximation algorithm [Hochbaum, Shmoys '86]
 - Best possible (P≠NP)

Outline

- k-Supplier on general metrics
- Euclidean k-Supplier

Fast approximation algorithm

Algorithm for k-Supplier

Guess optimal value L

Algorithm for k-Supplier

- Guess optimal value L
- Maximal clients S of pairwise distance > 2L
 - Disjoint balls of radius L

1

Algorithm for k-Supplier

[Hochbaum, Shmoys '86]

- Guess optimal value L
- Maximal clients S of pairwise distance > 2L
 - Disjoint balls of radius L

If |S| > k: declare **OPT** > L

1

Algorithm for k-Supplier

[Hochbaum, Shmoys '86]

- Guess optimal value L
- Maximal clients S of pairwise distance > 2L
 - Disjoint balls of radius L

If |S| > k: declare **OPT** > L

If $|S| \le k$: declare **ALG** $\le 3L$

Algorithm for k-Supplier

- Guess optimal value L
- Maximal clients S of pairwise distance > 2L
 - Disjoint balls of radius L

If
$$|S| > k$$
: declare **OPT** > L

If
$$|S| \le k$$
: declare **ALG** $\le 3L$ ALG = one facility in each **S** ball

1

Algorithm for k-Supplier

- Guess optimal value L
- Maximal clients S of pairwise distance > 2L
 - Disjoint balls of radius L

If
$$|S| > k$$
: declare **OPT** > L

If
$$|S| \le k$$
: declare **ALG** $\le 3L$ ALG = one facility in each **S** ball

•

Algorithm for k-Supplier

- Guess optimal value L
- Maximal clients S of pairwise distance > 2L
 - Disjoint balls of radius L

If
$$|S| > k$$
: declare **OPT** > L

If
$$|S| \le k$$
: declare **ALG** $\le 3L$ ALG = one facility in each S ball

From Set Cover

From Set Cover

From Set Cover

From Set Cover

From Set Cover

Euclidean k-Supplier

Points in R^d

Euclidean distance

•
$$d(u,v) = \sqrt{(u_1-v_1)^2 + (u_2-v_2)^2 + ... + (u_d-v_d)^2}$$

Natural metric in many applications

Can we do any better?

Euclidean k-Supplier Hardness

Thm: NP-hard to approximate better than √7

From degree 3 planar vertex cover [Feder, Greene '88]

Euclidean k-Supplier Hardness

Thm: NP-hard to approximate better than √7

From degree 3 planar vertex cover [Feder, Greene '88]

Euclidean k-Supplier Hardness

Thm: NP-hard to approximate better than √7

From degree 3 planar vertex cover [Feder, Greene '88]

$$OPT(VC) \le k \Rightarrow OPT(k-Supp) = 1$$

$$OPT(VC) > k \Rightarrow OPT(k-Supp) \ge \sqrt{7}$$

Results

Euclidean k-Supplier

- $\sqrt{3+1}$ < 2.74 approximation algorithm
 - Any number of dimensions
 - Running time ~O(d⋅n²)
 - $\sqrt{7}$ > 2.64 hardness [Feder, Greene '88]

Results

Euclidean k-Supplier

- $\sqrt{3+1}$ < 2.74 approximation algorithm
 - Any number of dimensions
 - Running time ~O(d⋅n²)
 - $\sqrt{7}$ > 2.64 hardness [Feder, Greene '88]

- Fast 2.965 approximation algorithm
 - Time O(n·log²n), d=O(1) dimensions
 - Previously 3-approx in O(n·log k)

- Guess optimal value L
- *Maximal* clients **S** of pairwise distance $> \sqrt{3}$ L

- Guess optimal value L
- *Maximal* clients **S** of pairwise distance $> \sqrt{3}$ L
- Define graph G on vertices S
 - edge (u,v) iff \exists facility f : d(u,f) and d(v,f) \leq L

- Guess optimal value L
- *Maximal* clients **S** of pairwise distance $> \sqrt{3}$ L
- Define graph G on vertices S
 - edge (u,v) iff \exists facility f: d(u,f) and $d(v,f) \leq L$
- Solve min edge cover on G

Edge cover: min number of edges to cover all vertices
Poly-time algorithm [Edmonds '65]...

- Guess optimal value L
- *Maximal* clients **S** of pairwise distance $> \sqrt{3}$ L
- Define graph G on vertices S
 - edge (u,v) iff \exists facility f: d(u,f) and $d(v,f) \leq L$
- Solve min edge cover on G

Edge cover: min number of edges to cover all vertices
Poly-time algorithm [Edmonds '65]...

- Guess optimal value L
- *Maximal* clients **S** of pairwise distance $> \sqrt{3}$ L
- Define graph G on vertices S
 - edge (u,v) iff \exists facility f: d(u,f) and $d(v,f) \leq L$
- Solve min edge cover on G
 - EC* > k ⇒ OPT > L
 - EC* \leq k \Rightarrow ALG \leq ($\sqrt{3}$ +1) · L

Edge cover: min number of edges to cover all vertices

Poly-time algorithm [Edmonds '65]...

- Guess optimal value L
- *Maximal* clients **S** of pairwise distance $> \sqrt{3}$ L
- Define graph G on vertices S
 - edge (u,v) iff \exists facility f : d(u,f) and d(v,f) \leq L
- Solve min edge cover on G

To show
$$\begin{cases} \blacksquare & EC^* > k \Rightarrow OPT > L \\ \blacksquare & EC^* \le k \Rightarrow ALG \le (\sqrt{3}+1) \cdot L \end{cases}$$

Edge cover: min number of edges to cover all vertices
Poly-time algorithm [Edmonds '65]...

 Main property: any facility f can "cover" at most two clients in S

 Main property: any facility f can "cover" at most two clients in S

 Main property: any facility f can "cover" at most two clients in S

 Main property: any facility f can "cover" at most two clients in S

Contradicts choice of "net" 5!

 Main property: any facility f can "cover" at most two clients in S

k-Supplier[S] of value L ≡ edge cover on G

Contradicts choice of "net" 5!

Running time

- Construct graph G in O(dn²)
 - naïve method
- Solve edge cover in O(n^{1.5})
 - O(E√V) algorithm [Micali, Vazirani '80]
- Overall: O(dn²·log n)

Running time

- Construct graph G in O(dn²)
 - naïve method
- Solve edge cover in O(n^{1.5})
 - O(E√V) algorithm [Micali, Vazirani '80]
- Overall: O(dn²·log n)

Improved runtime for d=O(1)

- Approximate nearest neighbor
 - [Arya, Mount, Netanyahu, Silverman, Wu '98]
 - $1+\epsilon$ approx. nearest neighbors
 - O(log n) time per query: NN, add, delete
 - O(1) dimensions

- Approximate nearest neighbor
 - [Arya, Mount, Netanyahu, Silverman, Wu '98]
 - $1+\epsilon$ approx. nearest neighbors
 - O(log n) time per query: NN, add, delete
 - O(1) dimensions
 - \Rightarrow Construct G in O(n·log n)

- Approximate nearest neighbor
 - [Arya, Mount, Netanyahu, Silverman, Wu '98]
 - $1+\epsilon$ approx. nearest neighbors
 - O(log n) time per query: NN, add, delete
 - O(1) dimensions
 - ⇒ Construct G in O(n·log n)
- Edge cover in O(n^{1.5})

```
\sqrt{3+1+\epsilon} approx. in \sim O(n^{1.5}) time
```

- Approximate nearest neighbor
 - [Arya, Mount, Netanyahu, Silverman, Wu '98]
 - $1+\epsilon$ approx. nearest neighbors
 - O(log n) time per query: NN, add, delete
 - O(1) dimensions
 - ⇒ Construct G in O(n·log n)
- Edge cover in O(n^{1.5})
 - Use additional structure in G?

 $\sqrt{3}+1+\epsilon$ approx. in $\sim O(n^{1.5})$ time

Here G is planar

Here G is planar

Here G is planar

Here G is planar

- Here G is planar
- Use $O(n^{\omega/2})$ algorithm [Mucha, Sankowski '06]
 - ω < 2.38 is matrix multiplication exponent

- Here G is planar
- Use $O(n^{\omega/2})$ algorithm [Mucha, Sankowski '06]
 - ω < 2.38 is matrix multiplication exponent
- Don't know further useful structure of G

- Here G is planar
- Use $O(n^{\omega/2})$ algorithm [Mucha, Sankowski '06]
 - ω < 2.38 is matrix multiplication exponent
- Don't know further useful structure of G
 - For d=2, G can be any degree 3 planar

- Here G is planar
- Use $O(n^{\omega/2})$ algorithm [Mucha, Sankowski '06]
 - ω < 2.38 is matrix multiplication exponent
- Don't know further useful structure of G
 - For d=2, G can be any degree 3 planar
 - For d≥3, G does not exclude any minor

Nearly linear time algorithm

Near-linear time

Idea: reduce to edge cover on special graphs

Near-linear time

- Idea: reduce to edge cover on special graphs
 - Cactus (linear cycles)
 - Solvable in linear time

- Idea: reduce to edge cover on special graphs
 - Cactus (linear cycles)
 - Solvable in linear time
- Constructing G more complex
 - Also worse approx. ratio 2.965

Near-linear time

- Idea: reduce to edge cover on special graphs
 - Cactus (linear cycles)
 - Solvable in linear time
- Constructing G more complex
 - Also worse approx. ratio 2.965 ⊗
 - But time ~O(n) using ANN

1

Constructing G

- Graph G has
 - vertices S ⊂ clients

scale L = 1

- edges E ⊆ facilities
- Use larger separation in S + more geometry

- Graph G has
 - vertices S ⊂ clients

scale L = 1

- edges E ⊆ facilities
- Use larger separation in S + more geometry

c' and c *fringe* intersect

- Graph G has
 - vertices S ⊂ clients

scale L = 1

- edges E ⊆ facilities
- Use larger separation in S + more geometry

c' and c *fringe* intersect

d *antipode* intersects <f,c>

- (i) c & d fringe intersect
- (ii) d is "too far" from f

Maintain pair of "end points"

Maintain pair of "end points"

- Edge cover covers clients in G within 1
 - guess of OPT

- Edge cover covers clients in G within 1
 - guess of OPT
- Client u ∉ V(G) intersects some v ∈ V(G)

- Edge cover covers clients in G within 1
 - guess of OPT
- Client u ∉ V(G) intersects some v ∈ V(G)
 - Facility e ∈ Ball(v,1) in edge cover

- Edge cover covers clients in G within 1
 - guess of OPT
- Client u ∉ V(G) intersects some v ∈ V(G)
 - Facility e ∈ Ball(v,1) in edge cover

Lemma: $d(u,e) \le (3-\rho)$ or $d(u,V(G)) \le (2-\rho)$.

Analys

Analysis outline

- Edge cover covers clients in G within 1
 - guess of OPT
- Client u ∉ V(G) intersects some v ∈ V(G)
 - Facility e ∈ Ball(v,1) in edge cover

Lemma: $d(u,e) \le (3-\rho)$ or $d(u,V(G)) \le (2-\rho)$.

u not antipode <e,v>

- Edge cover covers clients in G within 1
 - guess of OPT
- Client u ∉ V(G) intersects some v ∈ V(G)
 - Facility e ∈ Ball(v,1) in edge cover

Lemma: $d(u,e) \le (3-\rho)$ or $d(u,V(G)) \le (2-\rho)$.

- Edge cover covers clients in G within 1
 - guess of OPT
- Client u ∉ V(G) intersects some v ∈ V(G)
 - Facility e ∈ Ball(v,1) in edge cover

Lemma: $d(u,e) \le (3-\rho)$ or $d(u,V(G)) \le (2-\rho)$.

u antipode <e,v>

- Edge cover covers clients in G within 1
 - guess of OPT
- Client u ∉ V(G) intersects some v ∈ V(G)
 - Facility e ∈ Ball(v,1) in edge cover

Lemma: $d(u,e) \le (3-\rho)$ or $d(u,V(G)) \le (2-\rho)$.

u antipode <e,v>

1

Analysis outline

- Edge cover covers clients in G within 1
 - guess of OPT
- Client u ∉ V(G) intersects some v ∈ V(G)
 - Facility e ∈ Ball(v,1) in edge cover

Lemma: $d(u,e) \le (3-\rho)$ or $d(u,V(G)) \le (2-\rho)$.

- Edge cover covers clients in G within 1
 - guess of OPT
- Client u ∉ V(G) intersects some v ∈ V(G)
 - Facility e ∈ Ball(v,1) in edge cover

Lemma: $d(u,e) \le (3-\rho)$ or $d(u,V(G)) \le (2-\rho)$.

u antipode <e,v>

$$\sqrt{8 - 8 \cdot \cos 2\alpha}$$

Couple more cases..

Open Questions

- Tight approximation ratio ?
 - $\sqrt{7} \le \alpha \le 1 + \sqrt{3}$
- Linear time $1+\sqrt{3}$ approximation ?
- Euclidean *k-Center* better than 2 ?
 - $\sqrt{3} \le \alpha \le 2$

Open Questions

- Tight approximation ratio ?
 - $\sqrt{7} \le \alpha \le 1 + \sqrt{3}$
- Linear time $1+\sqrt{3}$ approximation ?
- Euclidean k-Center better than 2 ?
 - $\sqrt{3} \le \alpha \le 2$
- "Subset" k-Supplier better than 3 ?
 - facilities ⊆ clients

Open Questions

- Tight approximation ratio ?
 - $\sqrt{7} \le \alpha \le 1 + \sqrt{3}$
- Linear time $1+\sqrt{3}$ approximation ?
- Euclidean k-Center better than 2 ?
 - $\sqrt{3} \le \alpha \le 2$
- "Subset" k-Supplier better than 3 ?
 - facilities ⊆ clients

Thank You!