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Green Computing 
 Revolution 

�  Essentially all IT is being redesigned with 
energy efficiency as a first order resource 

 
�  Examples 

�  Emergence of multicore chips 
�  Emergence of Solid State Disks (SSD) 
�  Speed Scalable processors and maybe disks 
�  Power heterogeneous architectures 
�  Google, Microsoft, etc. completely 

redesigning data centers and their 
management for energy efficiency 

�  Cisco redesigning routers for energy 
efficiency 

"What matters most to the computer designers at Google is not speed,  
but power, low power, because data centers can consume as much  
electricity as a city."--- Eric Schmidt, Former CEO 



Long Term Goal Sales Pitch 
�  Build a theory of energy as a computational 

resource that allows software engineers to reason 
abstractly about power, energy and temperature 
as effectively as they can currently abstractly 
reason about time and space 



But ... 
�  However, it seems that due 

to the fact that the physics 
of energy is quite different 
than that of time and space  
�  e.g. there is no energy 

hierarchy theorem 

�  We need different models to 
study energy as a 
computational resource 
than we use for time and 
space  



Current State of the Theory: Green Computing 
Algorithmics 

� Algorithmic principles for managing resources 
with different energy characteristics using 
some mechanism to achieve an energy 
related objective 
 



� Network Routing 
Paradigm 

�  Datagram 
packet routing 
� hard? 

�  Virtual circuit 
routing 

Energy Efficient Network Routing Research Program: 
This Talk 

�  Power 
Management 
Mechanism 

�  Intra-device power 
heterogeneity 

�  Inter-device power 
heterogeneity 
�  Future work 

�  Shutdown 



Dominant Energy Management Mechanisms 

�  1. Power heterogeneity 

�  Physics fact: Higher performance 
comes at a cost of energy efficiency 

 
�  Management: Use higher 

performance mode/device when the 
increased energy per unit 
computation/communication gives 
sufficient performance returns 

�  Heterogeneity can be intra-device or 
inter-device 

�  2. Shutdown 



Network Routing Paradigms 

� Datagram packet routing 

� Virtual circuit routing 



Virtual Circuit Model 
� Network = undirected multigraph 

 



Virtual Circuit Model 
� Network = undirected multigraph 

�  Input:  
�  Requests for connections arrive over time 
�  Request i consists of: 

� Source node si 

� Destination node  ti 

� Load (without great loss of generality assume 
unit loads for this talk) 

 

si 

ti 



Virtual Circuit Model 
�  Network = undirected multigraph 

�  Input:  
�  Requests for connections arrive over time 
�  Request i consists of: 

�  Source node si 

� Destination node  ti 

�  Load (without great loss of generality assume 
unit loads for this talk) 

�  Output: In response to request i, a (si, ti) path 
must be specified 

si 

ti 



Standard Energy Model 
�  Power = static power + dynamic power 

�  = σ+ speedα 

�  Speed in [0, ∞ ) 
� α in [1.1, 3] 

�  = σ+ loadα 

�  A shutdown device uses no power 

�  For reasons of mathematical tractability, 
assume power management happens on 
edges 
�  Later we’ll say something about about the case 

where power management happens on nodes 



Energy Efficient Routing Problem [AAZ2010] 

� Feasible Solution: A routing of all 
requests 

� Objective: Minimize aggregate 
power over all edges 
�  = Σedges e powered on (σ+ load(e)α) 



Warm-up Problem 1: 

� Assume static power σ= 0 
� Assume all si = s 
� Assume all ti = t 

� Question: What is the optimal 
solution for this network? 

s t 

σ+ loadα 



Warm-up Problem 1: 

� Assume static power σ= 0 
� Assume all si = s 
� Assume all ti = t 

� Question: What is the optimal 
solution for this network? 

� Answer: Put 1/3 of the paths on 
each edge 

s t 

σ+ loadα 



Warm-up Problem 2: 

� Assume static power σ= 0 
� Assume all si = s 
� Assume all ti = t 

� Question: What is the optimal 
solution for this network? 

s t 

σ+ loadα 



Warm-up Problem 2: 

� Assume static power σ= 0 
� Assume all si = s 
� Assume all ti = t 

� Question: What is the optimal 
solution for this network? 

� Answer: The aggregate power on 
each of the three s-t paths should 
be identical 

s t 

σ+ loadα 



Warm-up Problem 3: 

� Assume static power σ= 0 

� Question: What is the obvious 
online algorithm? 

s1 

t1 

s2 

t2 

σ+ loadα 



Warm-up Problem 3: 
�  Assume static power σ= 0 

�  Question: What is the obvious  
    online algorithm? 

�  Answer: Greedy Water filling = route 
each request in such a way that the 
aggregate increase in power is 
minimized (shortest path 
computation) 

�  Theorem [AAFPW1997] Water filling is 
O(1)-competitive 

�  Proof[WAOA2012] : convex 
programming duality 

s1 

t1 

s2 

t2 

σ+ loadα 



Warm-up Problem 4: 

� Assume static power σ= ∞ 
� Assume all si = s 
� Assume all ti = t 

� Question: What is the optimal 
solution for this network? 

s t 

σ+ loadα 



Warm-up Problem 4: 

� Assume static power σ= ∞ 
� Assume all si = s 
� Assume all ti = t 

� Question: What is the optimal 
solution for this network? 

� Answer: Use only 1 edge, and 
shutdown the rest 

s t 

σ+ loadα 



Warm-up Problem 5: 

� k requests 
� Many parallel edges 
� Assume all si = s 
� Assume all ti = t 

� Question: What is the optimal 
solution for this network? 

s t 

σ+ loadα 



Warm-up Problem 5: 
� k requests 
� Many parallel edges 
� Assume all si = s 
� Assume all ti = t 

� Question: What is the optimal 
solution for this network? 

� Answer: Have q paths on each of 
k/q edges, and shutdown the rest 
of the edges 
�  q = σ1/α is load at which dynamic 

power = static power 

s t 

σ+ loadα 



Literature 
�  Theorem: Online greedy water filling algorithm is 

O(1)-competitive when static power is zero (or 
shutdown isn’t possible) 

�  Theorem[AAZ2010]: There is a poly-time poly-log-
approximation algorithm 
�  Algorithm complicated and uses big hammers 
�  The poly in poly-log-approximation is sufficiently large 

that it is not explicitly calculated 
�  Hard to o(log ¼ k) approximate using standard 

complexity theoretic assumptions 

�  Theorem[MedAlg2012]: On instances with a single 
source,  
�  a poly-time O(1)-approximation using grouping and min-

cost flow 
�  an O(log 2α+1 k)-competitive online algorithm  



Results in Our SODA Submission 

�  Theorem: There is a poly-time O(logα k)-
approximation algorithm 
�  Combination of simple combinatorial 

algorithms 
�  Analysis follows directly from flow-cut gap for 

multi-commodity flow (the only hammer) 
�  The poly in poly-log-approximation is small 

�  Theorem: An Õ(log 3α+1 k)-competitive 
online algorithm  
�  Natural minimal extension of offline algorithm 
�  However, one part of the analysis is more 

involved than in offline case 



Online/Offline Algorithm 

�  Power-on a Steiner forest to guarantee 
minimal connectivity 

�  Hallucination:  
�  Sparsification: With probability Θ(log k)/q each 

request pair hallucinates its demand is q 
�  Water filling algorithm is used to route this 

“hallucinated flow” 
�  The “hallucinated” edges used to route 

hallucinated flow are powered on 

�  Water filling algorithm is used to route flow on 
the “powered on” edges 



Offline Analysis 

� Theorem: The algorithm is O(logαk)-
approximate 
�  Proof: Both the static power and the 

dynamic power are O(logαk)*Opt 



Offline Analysis: Static Power 

� Lemma: The static power for the Steiner 
forest edges is O(1)*Opt 

� Lemma: The static power for the 
hallucinated edges is O(logα k) * Opt 
�  Proof: The water filling that is used to route 

hallucinated flow is O(1)-competitive and 
sparsification doesn’t increase the 
expected cost for Opt on any edge by 
more than O(logα k) factor on  



Offline Analysis: Dynamic Power: via Congestion (1) 

�  Capacification: Each Steiner edge is given capacity 
q log k and each hallucinated edge is given 
capacity q 

�  Defn: Sparsity of a cut Q = capacity of edges in Q / 
demand across Q 

�  Lemma: The sparsity of every cut is Ω(log k) 
�  Proof:  

� Tree edges have enough capacity if there is low 
demand across a cut.  

� Hallucinated edges have enough capacity if 
there is high demand across a cut. 

� Union bound 



Offline Analysis: Dynamic Power: via Congestion (2) 

�  Corollary: There is a O(1)-congestion routing 
�  Proof: flow-cut gap for multi-commodity flow 

�  Lemma: The dynamic power used by the algorithm is 
O(logαk) *Opt 
�  Proof: There is a routing with O(1)-congestion, and 

hence flow O(q log k) on every powered-on edge, and 
the water filling algorithm that is used to route actual 
flow is O(1)-competitive 



Recall Algorithm 

�  Power-on a Steiner forest to guarantee 
minimal connectivity 

�  Hallucination:  
�  Sparsification: With probability Θ(log k)/q each 

request pair hallucinates its demand is q 
�  Water filling algorithm is used to route this 

hallucinated flow 
�  The “hallucinated” edges used to route 

hallucinated flow are powered on 

�  Water filling algorithm is used to route flow on 
the “powered on” edges 



Online Analysis: Dynamic Power 

�  Lemma: The water filling algorithm is O(1)-
approximate against any priority routing 
�  Priority routing =  each path only routes along 

edges powered on by the online algorithm by 
the time that request arrived 

�  Proof: Same analysis as in [WAOA2012] 

�  Essentially all the technical difficulty: Need to 
prove that Opt can’t greatly profit from 
powering on edges before online does 
�  To mimic the analysis in the offline case, we 

need to show that there is a low congestion 
priority routing 



Strategy to Show Low Congestion Priority Routing 

Big 

small 

Optimal Primal Maximum  
Priority Flow LP Value 

Optimal Dual Sparsest  
Priority Cut LP Value 

Optimal Primal Maximum  
Priority Flow ILP Value 

Optimal Dual Sparsest  
Priority Cut “ILP” Value 

Argue this is big as  
in the offline case 

Argue this “integrality gap” is small 

gap is obviously small 

= 



Maximum Priority Multicommodity Flow LP 

�  f(p) = flow routed on path p 
�  Priority component: Pi = priority (si, ti) paths  

�  Objective: Fractionally route as large of a fraction of 
each unit demand as possible 

�  wlog capacities are 1 by duplicating edges 



Dual LP:  Sparsest Priority Cut 

� “ILP” = sparsest priority cut problem 
�  de = 1/(number of priority cut requests) if e is 

in Q,  and 0 otherwise 
� ηi = 1/(number of priority cut requests) if 

request i is cut, and 0 otherwise 

�  Defn: (si, ti) are priority 
cut by edges Q if 
removing Q makes them 
disconnected at time i 

�  Defn: Priority sparsity of 
cut Q = |Q|/ (number of 
requests priority 
separated by Q 



Crux of Offline Analysis 

�  Lemma: The priority sparsity of every cut is Ω(1) 
�  Proof: Slightly more involved than offline case 

�  Lemma: The priority cut “integrality gap” is          
O(log2 k loglog k) 
�  Comment: No good reason to think this is tight 
�  Proof:  

� Geometric scaling to make ηi variables equal at 
a cost of a log k factor (reduction to multicut) 

� Use region growing approach to get “integral” de 
variables losing a O(log k loglog k) 

�  Corollary: There is a priority flow that has 
congestion O(log2 k loglog k) 

�  Theorem: The online algorithm is Õ(log 3α+1 k)-
competitive  



Say something about: 
� Future paper 

� Ravishankar Krishnaswamy, Viswanath 
Nagarajan, Kirk Pruhs, Cliff Stein, No title 
as of yet, hand written notes 

� Assumes power management is on the 
vertices/router instead of the edges/
links 
�  In practice it seems more likely that power 

management will be more prevalent in 
routers than in links 



What Power Management at Vertices is 
Different/Harder Mathematically/
Algorithmically 

�  Assume flow of 1 emanating 
from each leaf of a star-shaped 
Steiner tree, and you have to 
aggregate flows into groups of 
size q 
�  There is a low edge congestion 

routing 
�  There is not a low vertex 

congestion routing 

�  Upshot: The algorithm has to 
pick a Steiner forest so that the 
resulting vertex congestion is 
minimal 

Steiner Tree 



Main Result 
� Theorem: There is a poly-time poly-log-

approximate algorithm for energy 
efficient routing if the power 
management happens at the nodes 



Research Agenda for This Fall 

� Question 1: Can we obtain an analysis 
that doesn’t go via congestion? 

� Question 2: Can we extend our results to 
the case that there is inter-device power 
heterogeneity? 



Thanks to all my collaborators! 
Thanks for listening! 


