Information Spreading in Dynamic Networks

On the Power of Forwarding Algorithms

Rajmohan Rajaraman

July 29, 2013 @ Fields Institute

Chinmoy Dutta, Zhifeng Sun, Emanuele Viola (Northeastern) Gopal Pandurangan (NTU, Singapore; Brown)

Information Spreading

- There are k distinct data items (tokens) in a network
- Goal: A copy of each token is communicated to each node
- Communication model:
 - Tokens can be stored, copied, and forwarded
 - At most one token or a small message (O(log n) size) can be sent across an edge in one round
- Question: How many rounds do we need?

Information Spreading

- There are k distinct data items (tokens) in a network
- Goal: A copy of each token is communicated to each node
- Communication model:
 - Tokens can be stored, copied, and forwarded
 - At most one token or a small message (O(log n) size) can be sent across an edge in one round
- Question: How many rounds do we need?

- Idea: Have each token reach a new node in each round
 - Not achievable owing to bandwidth constraint
- Carefully schedule the token transmissions
- Spanning tree algorithm:
 - Pipeline tokens up the tree
 - Pipeline tokens down the tree
- Completed in O(n+k) rounds

- Idea: Have each token reach a new node in each round
 - Not achievable owing to bandwidth constraint
- Carefully schedule the token transmissions
- Spanning tree algorithm:
 - Pipeline tokens up the tree
 - Pipeline tokens down the tree
- Completed in O(n+k) rounds

- Idea: Have each token reach a new node in each round
 - Not achievable owing to bandwidth constraint
- Carefully schedule the token transmissions
- Spanning tree algorithm:
 - Pipeline tokens up the tree
 - Pipeline tokens down the tree
- Completed in O(n+k) rounds

- Idea: Have each token reach a new node in each round
 - Not achievable owing to bandwidth constraint
- Carefully schedule the token transmissions
- Spanning tree algorithm:
 - Pipeline tokens up the tree
 - Pipeline tokens down the tree
- Completed in O(n+k) rounds

- Idea: Have each token reach a new node in each round
 - Not achievable owing to bandwidth constraint
- Carefully schedule the token transmissions
- Spanning tree algorithm:
 - Pipeline tokens up the tree
 - Pipeline tokens down the tree
- Completed in O(n+k) rounds

- Idea: Have each token reach a new node in each round
 - Not achievable owing to bandwidth constraint
- Carefully schedule the token transmissions
- Spanning tree algorithm:
 - Pipeline tokens up the tree
 - Pipeline tokens down the tree
- Completed in O(n+k) rounds

- Idea: Have each token reach a new node in each round
 - Not achievable owing to bandwidth constraint
- Carefully schedule the token transmissions
- Spanning tree algorithm:
 - Pipeline tokens up the tree
 - Pipeline tokens down the tree
- Completed in O(n+k) rounds

Spreading in Dynamic Networks

- What can be done when the network is dynamic?
 - Nodes are fixed, but edges change dynamically
- Central question:
 - Can the k-gossip problem be completed in O(n+k) rounds?
- Answer will depend on model:
 - Power of adversary in control of network dynamics
 - Communication model

Spreading in Dynamic Networks

- What can be done when the network is dynamic?
 - Nodes are fixed, but edges change dynamically
- Central question:
 - Can the k-gossip problem be completed in O(n+k) rounds?
- Answer will depend on model:
 - Power of adversary in control of network dynamics
 - Communication model

Motivation for Study

- Many networks are inherently dynamic
 - Links and link quality can change with node mobility and communication environment
- Also important for static networks:
 - Large-scale parallel interconnects and distributed networks
 - Applications do not run in isolation
 - Information spreading task needs to complete in a network carrying other traffic
 - Impact of competing unpredictable traffic can be modeled by a dynamic network
- Why an adversarial model?
 - Lower bounds explore the limits of what can be achieved
 - Upper bounds yield very strong guarantees

Computing over Dynamic Networks

- Self-stabilization [Dijkstra 74, ..., Dolev 00, ...]
 - Convergence to steady state from arbitrary initial state in the absence of dynamics
- Load balancing [Aiello-Awerbuch-Maggs-Rao 93, ...]
 - Balance an initial arbitrary distribution of tokens
- Packet routing and multi-commodity flow
 - The Slide protocol [Awerbuch-Mansour-Shavit 89, Afek-Gafni-Rosen 92, ...]
 - Local balancing [Awerbuch-Leighton 93,94, ...]
- Random walks [Avin-Koucky-Lotker 08]
- Information dissemination [Kuhn-Lynch-Oshman 10]

Information Spreading: k-Gossip

- Initially, k tokens distributed among a subset of nodes
- Goal: Disseminate the tokens to every node in the network as quickly as possible
- Applications:
 - Counting the number of nodes
 - All-to-all communication
 - Primitive for more complex distributed computing

Quest for a Simple Local Protocol

- Let S_{..} be the set of tokens at u
- Take 1: RANDOM
 - Node u broadcasts a token chosen uniformly at random from S_u
- The Good: Can be efficiently implemented in any adversarial network model
 - Token transmitted is independent of neighborhood
- The Bad: Requires $\Omega(n^2)$ rounds in the worst-case even for static networks
 - Progress along an edge requires expected $\Omega(n)$ rounds

- Let S₁ be the set of tokens at u
- Take 2: DIFF
 - Along edge (u,v), node u sends an arbitrary token chosen from S_u S_v
- The Good: Completes in O(n) rounds in any static network
 - Analysis by a delay sequence argument
- The Bad: May need $\Omega(n^2)$ rounds under adversarial dynamics

- Let S₁ be the set of tokens at u
- Take 2: DIFF
 - Along edge (u,v), node u sends an arbitrary token chosen from S_u S_v
- The Good: Completes in O(n) rounds in any static network
 - Analysis by a delay sequence argument
- The Bad: May need $\Omega(n^2)$ rounds under adversarial dynamics

- Let S₁ be the set of tokens at u
- Take 2: DIFF
 - Along edge (u,v), node u sends an arbitrary token chosen from S_u S_v
- The Good: Completes in O(n) rounds in any static network
 - Analysis by a delay sequence argument
- The Bad: May need $\Omega(n^2)$ rounds under adversarial dynamics

- Take 3: RAND-DIFF
 - Along edge (u,v), node u sends a token chosen uniformly at random from $S_u S_v$
 - A weak adversary cannot set up worst-case edges
- The Good: Certainly beats the preceding lower bound example
- The Bad: Cannot be implemented efficiently
 - Determining whether the set difference is nonempty requires Ω(n) bits on communication complexity [Kalyanasundaram-Schnitger 92, Razbarov 92]
 - Even if network is relatively static, too many rounds of communication
 - Also applies to DIFF

Network and Protocol Models

- Synchronous network model
 - Computing progresses in synchronous rounds
- Adversarial model:
 - Strong adaptive adversary: In round r, in parallel
 - An adversary presents connected network G_r
 - Each node decides what message to broadcast
 - Weak adaptive adversary:
 - Network may remain static for O(log(n)) rounds
 - Each node knows its neighbors
 - Oblivious adversary:
 - Adversary does not know the algorithm's moves
- Types of algorithms:
 - Forwarding: Do not manipulate tokens in any way other than store, copy, and forward them
 - General: The messages may be arbitrary, and nodes can construct tokens by processing multiple messages

Previous Results

- Token-forwarding against a strong adaptive adversary [Kuhn-Lynch-Oshman 10]:
 - Every deterministic forwarding algorithm requires $\Omega(n\log(n))$ rounds
 - $-\Omega(n^2)$ lower bound for a restricted class of forwarding algorithm
- Network coding against a strong adaptive adversary [Haeupler 11, Haeupler-Karger 11]:
 - O(n) rounds whp for token/message size >= nlog(n)
 - $O(n^2/log(n))$ rounds whp for token/message size >= log(n)
 - Can be made deterministic for larger message sizes
 - Centralized will allow smaller message sizes

This Talk

- Every online token-forwarding algorithm for k-gossip needs $\Omega(nk/log(n))$ rounds under a strong adaptive adversary
 - For large token/message sizes, establishes an $\Omega(n/\log(n))$ gap between token-forwarding and network coding
 - Applies even to well-mixed distributions
- Can we break this "quadratic" barrier under weaker adversary models?
 - A variant of RAND-DIFF that completes in O(n polylog(n)) rounds, starting from a well-mixed distribution, against a weak adaptive adversary
- Open problems, offline model, ...

Lower Bound: Basic Setup

- Initial distribution:
 - Every node has a distinct token (k = n)
- Focus on centralized deterministic algorithms
 - In each round, the algorithm selects for each node a token to broadcast
 - The algorithm can choose to broadcast other information as well
 - Then, adversary selects the network
 - Strong adversary model

Lower Bound: Free Edges

- In a round r, call an edge (u,v) free if at the start of round r, u has the token that v broadcasts, and vice versa
- In each round, adversary can add free edges without any cost
 - No useful token exchange along a free edge
- The free edges may not form a connected network

Lower Bound: Free and Non-Free Edges

To ensure connectivity, the adversary needs to connect the connected components with non-free edges

Lower Bound: Useful Token Exchanges

- Consider the graph induced by the free edges
- The adversary selects one node from each component and connects them in a line
- The number of useful token exchanges is at most twice the number of connected components
- How do we bound the number of connected components?
 - Depends on the tokens being broadcast
 - As the computation proceeds, difficult to keep track

Lower Bound: Half-Empty Configuration

- A sequence of nodes v₁,...,v_m is half-empty with respect to a sequence of tokens t₁,...,t_m
 - For every i≠j, either v_i is missing t_j or v_j is missing t_i
 - We call the pair (<v_i>, <t_i>) a half-empty configuration of size m
- Key point:
 - The definition is entirely based on the absence of tokens, not on the tokens being broadcast

Lower Bound: Proof Steps

Necessity:

2m useful token exchanges → half-empty configuration of size m

Monotonicity:

 Half-empty configuration of size m in round r → half-empty configuration of size m in round 1

• Size:

- Well-mixed distribution initially: each node has each token independently with probability ¾ → largest half-empty configuration is of size O(log n) whp
- Useful token exchanges in each round is O(log(n)) whp
- Number of token exchanges needed is $\Omega(n^2)$ whp
- Number of rounds needed equals $\Omega(n^2/\log(n))$ whp

Lower Bound: Necessity

- m useful token exchanges imply at least m/2 components
- Take any node v_i from component C_i and let t_i be the token broadcast by v_i
- Then <v_i> is half-empty with respect to <t_i>

Lower Bound: Monotonicity

- Recall that the definition requires
 - For every i≠j, either v_i is missing t_j or v_j is missing t_i
- Any half-empty configuration in round r also exists at the start of round 1

Lower Bound: O(log n) bound on Size

- Let E_m denote the event that there exists a half-empty configuration of size m
- Need m nodes v₁,...,v_m and m tokens t₁,...,t_m such that for each i≠j, either v_i is missing t_i or v_i is missing t_i
- By calculation below, whp m = O(log(n))

$$\Pr[E_m] \le \binom{n}{m} \cdot \frac{n!}{(n-m)!} \cdot \left(\frac{1}{2}\right)^{\binom{m}{2}} \le n^{2m} \cdot \frac{1}{2^{m(m-1)/2}} \le \frac{2^{2m\log n}}{2^{m(m-1)/2}}$$

Lower Bound: Generalizations

- Takeaway: Even if each node has a large fraction of tokens, "closing the deal" requires nearly quadratic rounds
- Extends to other initial distributions
 - When each node has one token (singleton):
 - Using Hall's Theorem, set up a perfect node-token matching in the well-mixed distribution
 - Can reduce well-mixed distribution to singleton distribution
 - For k tokens, with each token at exactly one node, $\Omega(nk/\log(n))$ lower bound
- Extends to randomized algorithms where the adversary knows the coin outcomes in the current round, but is unaware of future ones
- Extends to multiple tokens per round and other dynamic network models [Kuhn-Haeupler 12]

Revisiting the Adversarial Model

- Online: A sequence of evolving networks
 - Strong Adaptive: Algorithm decides token transmissions without knowledge of neighborhood
 - Weak Adaptive: Algorithm is aware of neighborhood at each round of token transmission
 - Oblivious: Adversary fixes network sequence in advance, which is revealed incrementally
- Offline: Sequence of graphs known to algorithm in advance

Towards a New Protocol

- Recall the RAND-DIFF protocol
- Along edge (u,v), node u sends a token chosen uniformly at random from S_u – S_v
 - Weak adversary cannot set up worst-case edges
- Main hurdle:
 - Lower bound of $\Omega(n)$ bits on the communication complexity of set difference

The RAND-SYM-DIFF Protocol

- Along edge (u,v), one token chosen uniformly at random from (S_u S_v) union (S_v S_u)
- RAND-SYM-DIFF:
 - Repeatedly execute the above step
- Implementation in O(log n) rounds:
 - Each node sends a "fingerprint" of its set
 - If the fingerprints differ, repeat this over a random binary search
- The above uses shared randomness
- For private randomness, use pseudorandom generator for combinatorial rectangles [Lu 02, Gopalan-Meka-Reingold-Trevisan-Vadhan 12]

Upper bound for RAND-SYM-DIFF

- Unable to analyze RAND-SYM-DIFF for arbitrary initial token distributions
- Completes in O(nlog(n)log(k)) rounds with high prob.
 - If network remains stable for O(log n) rounds at a time
 - And the initial token distribution is well-mixed
- Analysis sketch: In each round, one of these is true
 - A node is missing only O(log(n)) tokens
 - A node receives a constant fraction of its missing tokens
 - If number of distinct token sets being held by the nodes is r, then the total number of missing tokens is O(nr) while the number of tokens exchanged is O(r)

Summary

- Information spreading over dynamic networks
 - Applicable to computing environments with either dynamic topologies or dynamic network traffic
- Near-tight lower bound for strong adversary model
 - A first separation result of this kind between forwarding and network coding algorithms
- SYM-DIFF, a simple practical protocol under weak adversaries that achieves near optimal bounds for well-mixed distributions
 - Communication complexity of sampling problems
- Three centralized offline approximation algorithms

Open Problems

- Strong adaptive adversary:
 - Best general bounds for small message sizes
- Weak adaptive adversary:
 - What is the best upper bound achievable?
 - Analysis of SYM-DIFF protocol in the general case
- Bounds for oblivious adversary
- Alternative dynamic network models that may restrict the range of dynamics
- Offline problem:
 - Can near-linear rounds be achieved for the offline problem in the broadcast model?
 - What is the best approximation factor achievable?
 - Explore further connections to Directed Steiner tree problem and the network coding advantage

Questions?

The Offline Problem

Input:

- A sequence <G_r> of graphs
- An initial distribution of tokens

Output:

- A schedule of token dissemination
- Goal to minimize the number of rounds

Constraint:

- Each message contains at most one token
- We consider both broadcast and multiport models

A Flow Network

broadcast edge (unit capacity)
selection edge (unit capacity)
buffer edge (infinite capacity)

Centralized Offline Algorithms

- O(n sqrt{k log(n)}) round broadcast algorithm
 - A series of flows using random source-sink pairs
- O((n + k) log²(n)) round algorithm in which each edge can carry a token in each round
 - Change the flow network to accommodate the communication model
 - A series of flows using random source-sink pairs
- O(n^ε) bicriteria approximation assuming O(log(n)) tokens can be sent per round
 - Packing of directed Steiner trees in flow network

Modeling Network Dynamics

- Adversarial: Dynamics controlled by an adversary
 - Edges arrive/depart over time
 - There may be node churn
- Stochastic: Dynamics through a probabilistic process
 - Neighbors of new nodes randomly selected
 - Edge failure/recovery events drawn from probability distribution
- Strategic: Dynamics through strategic interactions
 - Each node is a potentially independent agent, with its own utility function, and rationally behaved
 - Focus on equilibria or transient behavior

An $O(n\sqrt{k\log n})$ round algorithm

- Phase I (Gather): Repeat m times
 - A destination node is selected at random and each token is sent to the destination
- Phase II (Disperse): For each token, in sequence
 - Each token is broadcast by every node holding that token for Θ(nlog(n)/m) rounds
- Claim I: Each iteration of Phase I can be completed in O(n) rounds
 - Number of rounds = O(nm + knlog(n)/m), minimized when m equal $\sqrt{k \log n}$ to give $O(n\sqrt{k \log n})$ rounds
- Claim II: Gossip is successfully completed at the end of Phase II with high probability

Analysis of Phase I

- Connect nodes at top level to a source with unit-capacity edges
- Consider destination node at level 2n as sink
- The source-sink min-cut has capacity at least n, so all n tokens can be routed to destination in at most 2n steps

Analysis of Phase II

- Let S be set of m destination nodes
- With high probability, each node is within O(nlog(n)/m) "hops" of S in the layered graph
 - Straightforward Chernoff bound argument
- Every node holding each token broadcasts for Θ(nlog(n)/m) rounds
 - Every node receives every token whp
- Can be derandomized using the method of conditional expectations and pessimistic estimators

Offline Via an Optimization Lens

- Input: A sequence of graphs <G_r> and an initial distribution of tokens
- Output: A schedule for gossip that minimizes completion time
- NP-hard
 - Reduction from the problem of maximizing the number of disjoint set covers
- Suppose L* is the minimum number of rounds needed for gossip, among all graph sequences
 - We know that L* is $O(n\sqrt{k\log n})$
 - Question: How well can we approximate L*?

Packing Directed Steiner Trees

Linear Programming Rounding

$$\max \sum_{T \in \Gamma} x_{T}$$

$$\sum_{T:e \in T} x_{T} \le c_{e} \quad e \in E$$

$$x_{T} \ge 0 \quad T \in \Gamma$$

 x_T = indicator variable for tree T Γ = set of all candidate Steiner trees c_e = capacity of edge e

- Construct L*-layered directed flow graph
- Compute O(n^ε) approximation for Fractional Steiner tree packing [Cheriyan-Salvatipour 06]
- Randomized rounding
 - Packs same number of trees as optimum
 - Incurs O(log(n)) blowup in capacity constraint
- Repeat O(n^ε) times to pack all trees
- Yields (n^ε,O(log(n)) approximation