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Metric TSP

Given a complete graph G and metric weights ¢ : E(G) — Rxo,
find a Hamiltonian circuit in G with minimum total weight.

» NP-hard

» best known approximation ratio % (Christofides [1976])

» no 123-approximation algorithm exists unless P = NP

(Karpinski, Lampis, Schmied [2013])

> integrality ratio of subtour relaxation between 3 and 3
(Wolsey [1980]), worst example is instance of Graph-TSP
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find a Hamiltonian circuit in G with minimum total weight.

» NP-hard

» best known approximation ratio % (Christofides [1976])

» no 123-approximation algorithm exists unless P = NP

(Karpinski, Lampis, Schmied [2013])

> integrality ratio of subtour relaxation between 3 and 3
(Wolsey [1980]), worst example is instance of Graph-TSP

Graph-TSP (= Eulerian 2ECSS):

approximation ratio 1.5 — € (Oveis Gharan, Saberi, Singh [2011])
approximation ratio 1.461 (Mémke, Svensson [2011])

v

v

v

approximation ratio 1.445 (Mucha [2012])

v

approximation ratio 1.4 (Sebd, Vygen [2012])



The unfortunate history of 2ECSS approximation
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Ear-decompositions
Write G = Py + Py + - - - + Pk, where P, is a single vertex, and
each P; (i=1,...,Kk) is either
» a circuit sharing exactly one vertex with Py + --- + P;_q, or
» a path sharing exactly its endpoints with Py + - - - + Pj_1.
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each P; (i=1,...,Kk) is either
» a circuit sharing exactly one vertex with Py + --- + P;_q, or
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1 » A graph is 2-edge-connected iff

» u it has an ear-decomposition.
Ps

closed ear

» A graph is 2-vertex-connected iff
it has an open ear-decomposition.
(Po, ..., Py are all open ears = paths.)

trivial ears (length 1)
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Ear-decompositions for T-joins

change parity here

» Ear induction:

» Split pendant ear at the vertices
that have wrong parity so far

» Take smaller part

This yields a T-join with at most 5(n — 1 + Keven) €dges,
where n = |V(G)| and Keen is the number of even ears.
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Simple algorithm for 2ECSS:
» compute an ear-decomposition

» delete all trivial ears. /

The remaining number of edges is at most

2(n—1)+3ke + 3ks + 1,

where n = |V(G)| and k; is the number of ears of length i.

So:
» even ears are bad, and
» 3-ears are bad.



Ear-decompositions with fewest even ears

For a 2-edge-connected graph G, let ¢(G) denote the minimum
number of even ears in an ear-decomposition of G.

Theorem (Frank [1993])

Let G be a 2-edge-connected graph. Then an ear-decomposition
with o(G) even ears can be computed in polynomial time,



Ear-decompositions with fewest even ears

For a 2-edge-connected graph G, let ¢(G) denote the minimum
number of even ears in an ear-decomposition of G.

Theorem (Frank [1993])

Let G be a 2-edge-connected graph. Then an ear-decomposition
with o(G) even ears can be computed in polynomial time, and

w = max{min{|J| :JisaT+join}: T C V(G), |T| even}.

Note:
» Every 2ECSS contains at least ©(G) even (thus: nontrivial) ears.
» So every 2ECSS contains at least n — 1 + ¢(G) edges.
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Ear-decompositions for 2ECSS

Simple algorithm for 2ECSS:
» compute an ear-decomposition
» delete all trivial ears.

The remaining number of edges is at most
(n— 1) + %kg—i— %k(g—i- %k4
(n -1+ keven) + %kS

(n—1+4¢(G)) + Lk
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Henceforth (for this talk only) assume ¢(G) = 0.
In other words, G is factor-critical (Lovasz [1972]).

Note: 3-ears are still bad.




Nice ear-decompositions

An ear-decomposition is called nice if
(i) the number of even ears is minimum,
(i) all short ears (length 2 or 3) are pendant,

(iii) and there are no edges connecting
internal vertices of different short ears.
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Lemma (Cheriyan, Sebd, Szigeti [2001])
A nice ear-decomposition can be computed in polynomial time.



Nice ear-decompositions . i

An ear-decomposition is called nice if
(i) the number of even ears is minimum,
(i) all short ears (length 2 or 3) are pendant,

(iii) and there are no edges connecting
internal vertices of different shortears. | T
[ T

Lemma (Cheriyan, Sebd, Szigeti [2001])
A nice ear-decomposition can be computed in polynomial time.

Sketch of Proof (for ¢(G) = 0):
» Compute an open odd ear-decomp. (Lovasz, Plummer [1986])

» Replace non-pendant short ears
» Replace adjacent short ears .
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Optimizing short ears » -

» Adding all short ears leaves some
number of connected components

Recall: An ear-decomposition is called nice if
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(i) all short ears (length 2 or 3) are pendant,
(iii) and there are no edges connecting
internal vertices of different short ears.
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Optimizing short ears » -

» Adding all short ears leaves some
number of connected components

» Internal vertices of short ears may

be incident to trivial ears '\
» These can be used to replace some ®

short ears by other short ears l

» Goal: minimize the resulting number .Y
of connected components °

Note: Replacing some short ears by other ears (with the same
internal vertices) will maintain a nice ear-decomposition.

Recall: An ear-decomposition is called nice if

(i) the number of even ears is minimum,
(i) all short ears (length 2 or 3) are pendant,
(iii) and there are no edges connecting
internal vertices of different short ears.



First solution: matroid intersection

» For each pendant ear (= color), represent each possible
variant by an edge connecting its two endpoints

» Pick an edge for each color, so that the edges form a forest

» Intersection of partition matroid and graphic matroid
(Rado [1942], Edmonds [1970])



Second solution: forest representative systems

v

For each pendant ear (=color), consider the set of endpoints
of the variants. In this hypergraph:

Find a forest representative system (Lovasz [1970])
This leads to useful ears
We have an algorithm with runtime O(|V(G)||E(G)|)

v
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New algorithm for 2ECSS

» Compute a nice ear-decomposition.
» Optimize short ears so that they serve best for connectivity.

Note: number of even ears is minimum, all short ears are pendant
» Take all edges of pendant ears.

» Add edges to obtain connectivity.
» Add edges to correct parity.
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where L is a lower bound on the number of edges in any 2ECSS,
and w is the number of pendant ears (after optimization).
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New algorithm for 2ECSS

» Compute a nice ear-decomposition.
» Optimize short ears so that they serve best for connectivity.

Note: number of even ears is minimum, all short ears are pendant

» Take all edges of pendant ears. Alternatively:

» Add edges to obtain connectivity. » Take all edges of

» Add edges to correct parity. nontrivial ears.
Theorem

The new algorithm yields a tour with at most 3L — = edges,
where L is a lower bound on the number of edges in any 2ECSS,
and w is the number of pendant ears (after optimization). O

Alternative yields an 2ECSS with at most 3L + 17 edges.

— The better of the two 2ECSSs has at most gL edges.



New algorithm for TSP

Compute a nice ear-decomposition.
Optimize short ears so that they serve best for connectivity.
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Take all edges of pendant ears.
Add edges to obtain connectivity.
Add edges to correct parity.
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Compute a nice ear-decomposition.

Optimize short ears so that they serve best for connectivity.
Delete all 1-ears. In each of the resulting blocks:

Take all edges of pendant ears.

Add edges to obtain connectivity.

Add edges to correct parity.
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Theorem

In each block, this algorithm yields a tour with at most %L — 7 edges,
where L is a lower bound on the number of edges in any 2ECSS,
and w is the number of pendant ears (after optimization).
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» Take all edges of pendant ears. Alternatively:

» Add edges to obtain connectivity. » Apply lemma of

» Add edges to correct parity. Momke-Svensson.
Theorem

In each block, this algorithm yields a tour with at most %L — 7 edges,
where L is a lower bound on the number of edges in any 2ECSS,
and w is the number of pendant ears (after optimization).



New algorithm for TSP

Compute a nice ear-decomposition.
Optimize short ears so that they serve best for connectivity.
Delete all 1-ears. In each of the resulting blocks:

v

v
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» Take all edges of pendant ears. Alternatively:

» Add edges to obtain connectivity. » Apply lemma of

» Add edges to correct parity. Momke-Svensson.
Theorem

In each block, this algorithm yields a tour with at most %L — 7 edges,
where L is a lower bound on the number of edges in any 2ECSS,
and w is the number of pendant ears (after optimization).

Theorem
Mémke-Svensson yields a tour with at most 4L + 2r edges.

— The better of the two tours has at most £ L edges.



Open problems

2ECSS

» improve approximation ratio
(combining with ideas from Vempala, Vetta [2000]?)

» improve on 2-approximation for weighted 2ECSS
(due to Khuller, Vishkin [1994])
» determine integrality ratio of the natural LP relaxation

TSP
» improve approximation ratio, determine integrality ratio
» extend to general metric TSP (beat Christofides [1976])
» extend to directed graphs (constant factor?)

T-tours O s-t-path-TSP
» find %—approximation algorithm for the weighted case
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Tight example for 2ECSS

L=n= OPT = 24k (Here k =2))

p(G) =1
T =4k = %L.

Algorithm computes solution with 32k — 1 edges.
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