IPCO 201 4 17th Conference on Integer Program-
ming and Combinatorial Optimization

Location: Bonn, Germany

Date: June 23-25, 2014

www.or .uni-bonn.de/ipco

Submission deadline: November 15, 2013
Program committee chair: Jon Lee
Local organization: Stephan Held, Jens Vygen

Extras:

v

summer school (before IPCO)
welcome reception, Arithmeum
poster session

Rhine river cruise with dinner

vV vy

Smallest

two-edge-connected spanning subgraphs

and the TSP

Jens Vygen

University of Bonn

(joint work with Andras Sebd)

August 1, 2013

B

Metric TSP

Given a complete graph G and metric weights ¢ : E(G) — Rxo,
find a Hamiltonian circuit in G with minimum total weight.

» NP-hard

» best known approximation ratio % (Christofides [1976])

» no 123-approximation algorithm exists unless P = NP

(Karpinski, Lampis, Schmied [2013])

> integrality ratio of subtour relaxation between 3 and 3
(Wolsey [1980]), worst example is instance of Graph-TSP

Metric TSP

Given a complete graph G and metric weights ¢ : E(G) — Rxo,
find a Hamiltonian circuit in G with minimum total weight.

» NP-hard

» best known approximation ratio % (Christofides [1976])

» no 123-approximation algorithm exists unless P = NP

(Karpinski, Lampis, Schmied [2013])

> integrality ratio of subtour relaxation between 3 and 3
(Wolsey [1980]), worst example is instance of Graph-TSP

Graph-TSP (= Eulerian 2ECSS):

approximation ratio 1.5 — € (Oveis Gharan, Saberi, Singh [2011])
approximation ratio 1.461 (Mémke, Svensson [2011])

v

v

v

approximation ratio 1.445 (Mucha [2012])

v

approximation ratio 1.4 (Sebd, Vygen [2012])

The unfortunate history of 2ECSS approximation

<™

Yolh g

597
448

<

[Yolh g

[sp](s\}

[2102] usbAn ‘9aes

[¥002] uefeseperep ‘Leyoeneybey ‘Lyor
[1002] /ewny] ‘eisAiy
[0002] enep ‘eledwsp

[1002/666 +] 1061ZS ‘Q0es ‘UeAlayD

[e661] BIBUIS ‘Ysojues ‘Bien

[2661] UBUSIA 481Ny

The unfortunate history of 2ECSS approximation

<™

Yolh g

597
448

<

3

[Yolh g

[sp](s\}

[2102] usbAn ‘9aes

[¥002] uefeseperep ‘Leyoeneybey ‘Lyor
[1002] /ewny] ‘eisAiy
[0002] enep ‘eledwsp

[1002/666 +] 1061ZS ‘Q0es ‘UeAlayD

[e661] BIBUIS ‘Ysojues ‘Bien

[2661] UBUSIA 481Ny

f
)
o
5 a
5w
)
S 5 2
S 5 & o
— S O
g 2 e ¢
£ 6 g o
o £ 2 o
o 2 £ ¢

The unfortunate history of 2ECSS approximation

<—— NoOw

<™

Yolh g

597
448

<

3

[Yolh g

[sp](s\}

[2102] usbAn ‘9aes

[¥002] uefeseperep ‘Leyoeneybey ‘Lyor
[1002] /ewny] ‘eisAiy
[0002] enep ‘eledwsp

[1002/666 +] 1061ZS ‘Q0es ‘UeAlayD

[e661] BIBUIS ‘Ysojues ‘Bien

[2661] UBUSIA 481Ny

f
)
o
5 a
5w
)
S 5 2
S 5 & o
— S O
g 2 e ¢
£ 6 g o
o £ 2 o
o 2 £ ¢

Ear-decompositions
Write G = Py + Py + - - - + Pk, where P, is a single vertex, and
each P; (i=1,...,Kk) is either
» a circuit sharing exactly one vertex with Py + --- + P;_q, or
» a path sharing exactly its endpoints with Py + - - - + Pj_1.

Ear-decompositions
Write G = Py + Py + - - - + Pk, where P, is a single vertex, and
each P; (i=1,...,Kk) is either
» a circuit sharing exactly one vertex with Py + --- + P;_q, or
» a path sharing exactly its endpoints with Py + - - - + Pj_1.

[] {]
[]
{

[J IPO
o

Ear-decompositions
Write G = Py + Py + - - - + Pk, where P, is a single vertex, and
each P; (i=1,...,Kk) is either
» a circuit sharing exactly one vertex with Py + --- + P;_q, or
» a path sharing exactly its endpoints with Py + - - - + Pj_1.

Ear-decompositions
Write G = Py + Py + - - - + Pk, where P, is a single vertex, and
each P; (i=1,...,Kk) is either
» a circuit sharing exactly one vertex with Py + --- + P;_q, or
» a path sharing exactly its endpoints with Py + - - - + Pj_1.

P

Ear-decompositions
Write G = Py + Py + - - - + Pk, where P, is a single vertex, and
each P; (i=1,...,Kk) is either
» a circuit sharing exactly one vertex with Py + --- + P;_q, or
» a path sharing exactly its endpoints with Py + - - - + Pj_1.

P3

b P

P

Ear-decompositions
Write G = Py + Py + - - - + Pk, where P, is a single vertex, and
each P; (i=1,...,Kk) is either
» a circuit sharing exactly one vertex with Py + --- + P;_q, or
» a path sharing exactly its endpoints with Py + - - - + Pj_1.

Ear-decompositions
Write G = Py + Py + - - - + Pk, where P, is a single vertex, and
each P; (i=1,...,Kk) is either
» a circuit sharing exactly one vertex with Py + --- + P;_q, or
» a path sharing exactly its endpoints with Py + - - - + Pj_1.

Ear-decompositions
Write G = Py + Py + - - - + Pk, where P, is a single vertex, and
each P; (i=1,...,Kk) is either
» a circuit sharing exactly one vertex with Py + --- + P;_q, or
» a path sharing exactly its endpoints with Py + - - - + Pj_1.

Ear-decompositions
Write G = Py + Py + - - - + Pk, where P, is a single vertex, and
each P; (i=1,...,Kk) is either
» a circuit sharing exactly one vertex with Py + --- + P;_q, or
» a path sharing exactly its endpoints with Py + - - - + Pj_1.

trivial ears (length 1)

Ear-decompositions
Write G = Py + Py + - - - + Pk, where P, is a single vertex, and
each P; (i=1,...,Kk) is either
» a circuit sharing exactly one vertex with Py + --- + P;_q, or
» a path sharing exactly its endpoints with Py + - - - + Pj_1.

» A graph is 2-edge-connected iff
it has an ear-decomposition.

trivial ears (length 1)

Ear-decompositions
Write G = Py + Py + - - - + Pk, where P, is a single vertex, and
each P; (i=1,...,Kk) is either
» a circuit sharing exactly one vertex with Py + --- + P;_q, or
» a path sharing exactly its endpoints with Py + - - - + Pj_1.

°pe1 ear » A graph is 2-edge-connected iff
» u it has an ear-decomposition.
Ps Glosed ear

trivial ears (length 1)

Ear-decompositions
Write G = Py + Py + - - - + Pk, where P, is a single vertex, and
each P; (i=1,...,Kk) is either
» a circuit sharing exactly one vertex with Py + --- + P;_q, or
» a path sharing exactly its endpoints with Py + - - - + Pj_1.

open ear

1 » A graph is 2-edge-connected iff

» u it has an ear-decomposition.
Ps

closed ear

» A graph is 2-vertex-connected iff
it has an open ear-decomposition.
(Po, ..., Py are all open ears = paths.)

trivial ears (length 1)

Ear-decompositions

Write G = Py + Py + - - - + Py, where Py is a single vertex, and
each P; (i=1,...,Kk) is either

» a circuit sharing exactly one vertex with Py + --- + P;j_q, or
» a path sharing exactly its endpoints with Py + - - - + Pj_1.

°pei ear » A graph is 2-edge-connected iff
u u it has an ear-decomposition.
Ps Glosed ear

» A graph is 2-vertex-connected iff
it has an open ear-decomposition.

» A nontrivial ear is called pendant
if none of its internal vertices is
endpoint of another nontrivial ear.

trivial ears (length 1)

Ear-decompositions

Write G = Py + Py + - - - + Py, where Py is a single vertex, and
each P; (i=1,...,Kk) is either

» a circuit sharing exactly one vertex with Py + --- + P;j_q, or
» a path sharing exactly its endpoints with Py + - - - + Pj_1.

°pei ear » A graph is 2-edge-connected iff
u u it has an ear-decomposition.
Ps Glosed ear

» A graph is 2-vertex-connected iff
it has an open ear-decomposition.

» A nontrivial ear is called pendant
if none of its internal vertices is
endpoint of another nontrivial ear.

\V4 » W.l.o.g., pendant ears come last,
trivial ears (length 1) followed only by trivial ears.

Ear-decompositions

Write G = Py + Py + - - - + Py, where Py is a single vertex, and
each P; (i=1,...,Kk) is either

» a circuit sharing exactly one vertex with Py + --- + P;j_q, or
» a path sharing exactly its endpoints with Py + - - - + Pj_1.

°pei ear » A graph is 2-edge-connected iff
u u it has an ear-decomposition.
Ps Glosed ear

» A graph is 2-vertex-connected iff
it has an open ear-decomposition.

» A nontrivial ear is called pendant
if none of its internal vertices is
endpoint of another nontrivial ear.

\V4 » W.l.o.g., pendant ears come last,
trivial ears (length 1) followed only by trivial ears.

Ear-decompositions for T-joins

» Ear induction:

Ear-decompositions for T-joins

\ » Ear induction:

l » Split pendant ear at the vertices
that have wrong parity so far

Ear-decompositions for T-joins

change parity here

» Ear induction:

» Split pendant ear at the vertices
/' that have wrong parity so far

» Take smaller part

Ear-decompositions for T-joins

change parity here

» Ear induction:

» Split pendant ear at the vertices
that have wrong parity so far

» Take smaller part

This yields a T-join with at most 5(n — 1 + Keven) €dges,
where n = |V(G)| and Keen is the number of even ears.

Ear-decompositions for 2ECSS

Simple algorithm for 2ECSS:

» compute an ear-decomposition
» delete all trivial ears.

Ear-decompositions for 2ECSS

Simple algorithm for 2ECSS:

» compute an ear-decomposition

» delete all trivial ears. /

The remaining number of edges is at most

2(n—1)+3ke + 3ks + 1,

where n = |V(G)| and k; is the number of ears of length i.

Ear-decompositions for 2ECSS

Simple algorithm for 2ECSS:
» compute an ear-decomposition

» delete all trivial ears. /

The remaining number of edges is at most

2(n—1)+3ke + 3ks + 1,

where n = |V(G)| and k; is the number of ears of length i.

So:
» even ears are bad, and
» 3-ears are bad.

Ear-decompositions with fewest even ears

For a 2-edge-connected graph G, let ¢(G) denote the minimum
number of even ears in an ear-decomposition of G.

Theorem (Frank [1993])

Let G be a 2-edge-connected graph. Then an ear-decomposition
with o(G) even ears can be computed in polynomial time,

Ear-decompositions with fewest even ears

For a 2-edge-connected graph G, let ¢(G) denote the minimum
number of even ears in an ear-decomposition of G.

Theorem (Frank [1993])

Let G be a 2-edge-connected graph. Then an ear-decomposition
with o(G) even ears can be computed in polynomial time, and

w = max{min{|J| :JisaT+join}: T C V(G), |T| even}.

Note:
» Every 2ECSS contains at least ©(G) even (thus: nontrivial) ears.
» So every 2ECSS contains at least n — 1 + ¢(G) edges.

Ear-decompositions for 2ECSS

Simple algorithm for 2ECSS:
» compute an ear-decomposition
» delete all trivial ears.

The remaining number of edges is at most

S(n—1)+ 3k + tks + 1ka

Ear-decompositions for 2ECSS

Simple algorithm for 2ECSS:
» compute an ear-decomposition
» delete all trivial ears.

The remaining number of edges is at most
(n— 1) + %kg—i— %k{g—i- %k4

(n -1+ keven) + %k?,

IN

(n—1+4¢(G)) + Lk

AT MO DO

Ear-decompositions for 2ECSS

Simple algorithm for 2ECSS:
» compute an ear-decomposition
» delete all trivial ears.

The remaining number of edges is at most
(n— 1) + %kg—i— %k(g—i- %k4
(n -1+ keven) + %kS

(n—1+4¢(G)) + Lk

IN
MO RO A0

Henceforth (for this talk only) assume ¢(G) = 0.
In other words, G is factor-critical (Lovasz [1972]).

Note: 3-ears are still bad.

Nice ear-decompositions

An ear-decomposition is called nice if
(i) the number of even ears is minimum,
(i) all short ears (length 2 or 3) are pendant,

(iii) and there are no edges connecting
internal vertices of different short ears.

Nice ear-decompositions

An ear-decomposition is called nice if
(i) the number of even ears is minimum,
(i) all short ears (length 2 or 3) are pendant,

(iii) and there are no edges connecting
internal vertices of different short ears.

e,
.,
»,
0
.,
e,
e,
e
e,
e,
»,

Lemma (Cheriyan, Sebd, Szigeti [2001])
A nice ear-decomposition can be computed in polynomial time.

Nice ear-decompositions . i

An ear-decomposition is called nice if
(i) the number of even ears is minimum,
(i) all short ears (length 2 or 3) are pendant,

(iii) and there are no edges connecting
internal vertices of different shortears. | T
[T

Lemma (Cheriyan, Sebd, Szigeti [2001])
A nice ear-decomposition can be computed in polynomial time.

Sketch of Proof (for ¢(G) = 0):
» Compute an open odd ear-decomp. (Lovasz, Plummer [1986])

» Replace non-pendant short ears
» Replace adjacent short ears .

Sketch of proof (some details)

» Replace non-pendant short ears

Sketch of proof (some details)

» Replace non-pendant short ears

» Replace adjacent short ears

e o o,
P Q P Q

Optimizing short ears » -

» Adding all short ears leaves some
number of connected components

Recall: An ear-decomposition is called nice if

(i) the number of even ears is minimum,
(i) all short ears (length 2 or 3) are pendant,
(iii) and there are no edges connecting
internal vertices of different short ears.

Optimizing short ears » -

» Adding all short ears leaves some
number of connected components

Recall: An ear-decomposition is called nice if

(i) the number of even ears is minimum,
(i) all short ears (length 2 or 3) are pendant,
(iii) and there are no edges connecting
internal vertices of different short ears.

Optimizing short ears
» Adding all short ears leaves some
number of connected components s

» Internal vertices of short ears may
be incident to trivial ears

o
.,
v,
e
o,
e
o,
v

e,
>,
e,
e,
e,
e,
v,
e
»,

Recall: An ear-decomposition is called nice if

(i) the number of even ears is minimum,
(i) all short ears (length 2 or 3) are pendant,
(iii) and there are no edges connecting
internal vertices of different short ears.

Optimizing short ears .

» Adding all short ears leaves some
number of connected components s

» Internal vertices of short ears may
be incident to trivial ears

» These can be used to replace some o
short ears by other shortears .

e,
s,
e,
e,
e
e,
e
e
»,

Recall: An ear-decomposition is called nice if

(i) the number of even ears is minimum,
(i) all short ears (length 2 or 3) are pendant,
(iii) and there are no edges connecting
internal vertices of different short ears.

Optimizing short ears » -

» Adding all short ears leaves some
number of connected components

» Internal vertices of short ears may

be incident to trivial ears '\
» These can be used to replace some ®

short ears by other short ears l

» Goal: minimize the resulting number .Y
of connected components °

Recall: An ear-decomposition is called nice if

(i) the number of even ears is minimum,
(i) all short ears (length 2 or 3) are pendant,
(iii) and there are no edges connecting
internal vertices of different short ears.

Optimizing short ears » -

» Adding all short ears leaves some
number of connected components

» Internal vertices of short ears may

be incident to trivial ears '\
» These can be used to replace some ®

short ears by other short ears l

» Goal: minimize the resulting number .Y
of connected components °

Note: Replacing some short ears by other ears (with the same
internal vertices) will maintain a nice ear-decomposition.

Recall: An ear-decomposition is called nice if

(i) the number of even ears is minimum,
(i) all short ears (length 2 or 3) are pendant,
(iii) and there are no edges connecting
internal vertices of different short ears.

First solution: matroid intersection

» For each pendant ear (= color), represent each possible
variant by an edge connecting its two endpoints

» Pick an edge for each color, so that the edges form a forest

» Intersection of partition matroid and graphic matroid
(Rado [1942], Edmonds [1970])

Second solution: forest representative systems

v

For each pendant ear (=color), consider the set of endpoints
of the variants. In this hypergraph:

Find a forest representative system (Lovasz [1970])
This leads to useful ears
We have an algorithm with runtime O(|V(G)||E(G)|)

v

v

v

New algorithm for 2ECSS

» Compute a nice ear-decomposition.
» Optimize short ears so that they serve best for connectivity.

Note: number of even ears is minimum, all short ears are pendant
» Take all edges of pendant ears.

» Add edges to obtain connectivity.
» Add edges to correct parity.

New algorithm for 2ECSS

» Compute a nice ear-decomposition.
» Optimize short ears so that they serve best for connectivity.

Note: number of even ears is minimum, all short ears are pendant

» Take all edges of pendant ears.
» Add edges to obtain connectivity.
» Add edges to correct parity.

Theorem

The new algorithm yields a tour with at most 3L — = edges,
where L is a lower bound on the number of edges in any 2ECSS,
and w is the number of pendant ears (after optimization).

New algorithm for 2ECSS

» Compute a nice ear-decomposition.
» Optimize short ears so that they serve best for connectivity.

Note: number of even ears is minimum, all short ears are pendant

» Take all edges of pendant ears.
» Add edges to obtain connectivity. }L T Tlong
» Add edges to correct parity.

Theorem

The new algorithm yields a tour with at most 3L — = edges,
where L is a lower bound on the number of edges in any 2ECSS,
and w is the number of pendant ears (after optimization).

New algorithm for 2ECSS

» Compute a nice ear-decomposition.
» Optimize short ears so that they serve best for connectivity.

Note: number of even ears is minimum, all short ears are pendant

» Take all edges of pendant ears.
» Add edges to obtain connectivity. }L T Tlong
» Add edges to correct parity. }%(n — 1 — 27ghort — 4Tiong)

Theorem

The new algorithm yields a tour with at most 3L — = edges,
where L is a lower bound on the number of edges in any 2ECSS,
and w is the number of pendant ears (after optimization). O

New algorithm for 2ECSS

» Compute a nice ear-decomposition.
» Optimize short ears so that they serve best for connectivity.

Note: number of even ears is minimum, all short ears are pendant

» Take all edges of pendant ears. Alternatively:

» Add edges to obtain connectivity. » Take all edges of

» Add edges to correct parity. nontrivial ears.
Theorem

The new algorithm yields a tour with at most 3L — = edges,
where L is a lower bound on the number of edges in any 2ECSS,
and w is the number of pendant ears (after optimization). O

Alternative yields an 2ECSS with at most 3L + 17 edges.

— The better of the two 2ECSSs has at most gL edges.

New algorithm for TSP

Compute a nice ear-decomposition.
Optimize short ears so that they serve best for connectivity.

v

v

v

Take all edges of pendant ears.
Add edges to obtain connectivity.
Add edges to correct parity.

v

v

New algorithm for TSP

Compute a nice ear-decomposition.

Optimize short ears so that they serve best for connectivity.
Delete all 1-ears. In each of the resulting blocks:

Take all edges of pendant ears.

Add edges to obtain connectivity.

Add edges to correct parity.

v

v

v

v

v

v

New algorithm for TSP

Compute a nice ear-decomposition.

Optimize short ears so that they serve best for connectivity.
Delete all 1-ears. In each of the resulting blocks:

Take all edges of pendant ears.

Add edges to obtain connectivity.

Add edges to correct parity.

v

v

v

v

v

v

Theorem

In each block, this algorithm yields a tour with at most %L — 7 edges,
where L is a lower bound on the number of edges in any 2ECSS,
and w is the number of pendant ears (after optimization).

New algorithm for TSP

Compute a nice ear-decomposition.
Optimize short ears so that they serve best for connectivity.
Delete all 1-ears. In each of the resulting blocks:

v

v

v

» Take all edges of pendant ears. Alternatively:

» Add edges to obtain connectivity. » Apply lemma of

» Add edges to correct parity. Momke-Svensson.
Theorem

In each block, this algorithm yields a tour with at most %L — 7 edges,
where L is a lower bound on the number of edges in any 2ECSS,
and w is the number of pendant ears (after optimization).

New algorithm for TSP

Compute a nice ear-decomposition.
Optimize short ears so that they serve best for connectivity.
Delete all 1-ears. In each of the resulting blocks:

v

v

v

» Take all edges of pendant ears. Alternatively:

» Add edges to obtain connectivity. » Apply lemma of

» Add edges to correct parity. Momke-Svensson.
Theorem

In each block, this algorithm yields a tour with at most %L — 7 edges,
where L is a lower bound on the number of edges in any 2ECSS,
and w is the number of pendant ears (after optimization).

Theorem
Mémke-Svensson yields a tour with at most 4L + 2r edges.

— The better of the two tours has at most £ L edges.

Open problems

2ECSS

» improve approximation ratio
(combining with ideas from Vempala, Vetta [2000]?)

» improve on 2-approximation for weighted 2ECSS
(due to Khuller, Vishkin [1994])
» determine integrality ratio of the natural LP relaxation

TSP
» improve approximation ratio, determine integrality ratio
» extend to general metric TSP (beat Christofides [1976])
» extend to directed graphs (constant factor?)

T-tours O s-t-path-TSP
» find %—approximation algorithm for the weighted case

Open problems

2ECSS

» improve approximation ratio
(combining with ideas from Vempala, Vetta [2000]?)

» improve on 2-approximation for weighted 2ECSS
(due to Khuller, Vishkin [1994])
» determine integrality ratio of the natural LP relaxation

TSP
» improve approximation ratio, determine integrality ratio
» extend to general metric TSP (beat Christofides [1976])
» extend to directed graphs (constant factor?)

T-tours O s-t-path-TSP
» find %—approximation algorithm for the weighted case

Thank you!

Open problems

2ECSS

» improve approximation ratio
(combining with ideas from Vempala, Vetta [2000]?)

» improve on 2-approximation for weighted 2ECSS
(due to Khuller, Vishkin [1994])
» determine integrality ratio of the natural LP relaxation

TSP
» improve approximation ratio, determine integrality ratio
» extend to general metric TSP (beat Christofides [1976])
» extend to directed graphs (constant factor?)

T-tours O s-t-path-TSP
» find %—approximation algorithm for the weighted case

Thank you!

Tight example for 2ECSS

L=n= OPT = 24k (Here k =2))

p(G) =1
T =4k = %L.

Algorithm computes solution with 32k — 1 edges.

	Introduction
	Ear-Decompositions
	Earmuff Maximization
	Proof of Main Theorem
	Graph-TSP
	Conclusion

